
Abstract. Multidrug-resistant Mycobacterium tuberculosis
(MDRTB) and antibiotic-resistant Plasmodium falciparum are
the major global lethal infections accounting for over 4 million
deaths per year. Methicillin-resistant Staphylococcus aureus
(MRSA) is the major global nosocomial infection and
resistance to vancomycin is evident and may become common.
This review provides the scientific and medical basis that
support the use of one particular group of compounds, the
phenothiazines, and in particular thioridazine, for the
management of the above antibiotic-resistant infections.
Because thioridazine, a relatively mild neuroleptic as compared
to its parental compound chlorpromazine, kills intracellular
MDRTB and MRSA at clinical concentrations, its use for the
management of these infections may be considered. The review
also discusses the activity of phenothiazines against protozoa
and parasites, the mechanisms by which phenothiazines
promote their antimicrobial effects, their potential for
regulating efflux pumps that are a cause for mono or multidrug
resistance, as well as their potential for the therapy of
problematic infections caused by bacteria that have acquired
plasmid-antibiotic-resistant genes. 

History

The antimicrobial activity of phenothiazines has been known

since the time of Paul Ehrlich (1). However, because

methylene blue had been shown to have neuroleptic

properties, its antimicrobial properties remained essentially

underscored and, instead, derivatives of methylene blue were

eventually synthesised and used effectively for the therapy of

psychosis (2). The first such compound, chlorpromazine

(CPZ), was made available in 1953 by Rhone-Poulenc (3)

and, because of its wide and extensive use, its antimicrobial

properties were soon evident. However, because the golden

age of antibiotics began at this time, there was no need for

CPZ, or indeed any of  its derivatives, to be considered as

antimicrobial agents. Furthermore, because prolonged use

of CPZ produced a number of serious side-effects (4), and

whatever antimicrobial activity reported was essentially one

that was produced in vitro and at clinically irrelevant

concentrations (4, 5), CPZ or other phenothiazines were not

seriously considered as potential sources of new antibiotics,

even when they were shown to have desired antimicrobial

effects in vivo (2). However, the global increase of MDRTB,

quinidine-resistant malaria, nosocomial MRSA infections,

etc., primarily in countries that cannot afford available

antibiotics, notwithstanding the problem of resistance,

dictates that phenothiazines be now seriously considered

where other drugs have failed. 

Antimicrobial Activity of Phenothiazines

The antibacterial properties of phenothiazines may be

summarised as follows: gram-positive cocci (6-8),

Mycobacteria (2, 4, 9, 10-12) and some gram-negative rods,

such as Shigella spp., are more susceptible to a number of

phenothiazines as opposed to gram-negative rods such as

Escherichia coli (6) and Salmonella spp. (13) in general, with

MIC’s that range from 20 to 30 Ìg/ml for the "susceptible

group", and in excess of 100 Ìg/ for the "resistant group". 

It is important to note that, regardless of the method

employed for assaying the activity of the phenothiazine, all

of the activities take place at concentrations that greatly

exceed the highest plasma concentration achievable, namely

0.5 Ìg/ml (6). Although this data at face value suggests that

the antibacterial use of these compounds is not feasible,

smaller concentrations of phenothiazines do enhance the
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activity of antibiotics to which the bacterium is susceptible

(1, 14-16), even when it is resistant to the antibiotic (8). The

latter observations suggest that these compounds may serve

as adjuvants whenever there is a need to reduce the dose of

a given antibiotic or render an antibiotic-resistant infection

susceptible to the antibiotic (1, 14). Nevertheless, although

the concentrations of the phenothiazines that enhance

antibiotic activity are significantly lower than those that

have in vitro antibacterial effects, they are, in many cases,

beyond that which is clinically relevant. 

The potential use of phenothiazines as antibacterial

agents or as enhancers of antibiotic activity lies in their

ability to kill phagocytosed bacteria. Mycobacterium
tuberculosis and Staphylococcus aureus, that have been

phagocytosed by macrophages that by themselves have little

killing activity of their own, are effectively killed (6, 7, 12,

17). Killing takes place at concentrations in the medium that

are well within clinical levels and well below any toxic

effects against macrophages or other cellular components of

immunity (6, 7, 12). Killing apparently is the result of the

ability of the macrophage to concentrate the phenothiazine

to a level comparable to a minimal bactericidal

concentration (6, 7, 12, 17), a property previously shown for

tissues and organs that are rich in macrophages (18, 19). 

For all studies to date, the effectiveness of thioridazine

(TZ), whether in vitro directly or as an enhancer of

antibiotic activity, or for the reversal of antibiotic resistance

in vitro or ex vivo (i.e. macrophage), is equal to that of the

far more toxic CPZ. Because TZ kills intracellular MDRTB,

it has the potential of being employed for the therapy of an

individual who has recently sero-converted to a positive

PPD and who resides in an area that is known to have a

high frequency of MDRTB. TZ will probably prove to be

ineffective therapy for patients presenting with cavitary

disease exceeding that of moderate status, since the

concentrations of TZ needed for killing extracellular

MDRTB are well beyond that which is clinically achievable.

With respect to MRSA infections, TZ might be valuable for

treating recurrent MRSA-vancomycin-resistant infections

present in hyper-IgE syndrome (20) in febrile neutropenia

accompanying cancer chemotherapy (21), and other diseases

presenting with neutropenia and weak granulocyte

functions, i.e., glycogen storage disease type Ib (22), whose

basis for recurrence lies in the intracellular location of the

organism that is not killed by the macrophagic cell. 

Phenothiazines are known to alter the morphology of

bacteria when the concentration of the phenothiazines is below

that which inhibits the cell’s replication (1). The alterations are

specifically related to the species, such that the phenothiazines

causes filamentation of E. coli (23) and Salmonella
thyphimurium (13) and cluster formation of S. aureus resulting

from unseparated daughter cells (1, 24). It is interesting to note

that these respective responses to the phenothiazines are very

similar to those evoked by sub-inhibitory concentrations of a

beta-lactam (25). Because beta-lactams specifically bind PBP3

of a gram-negative bacterium such as E. coli, and such binding

is associated with the filamentation of the bacterium (25- 27),

phenothiazines may either bind directly to a PBP or have some

effect on other mechanisms that affect the PBP and

subsequent filamentation ensues. Because filamentation of

gram-negative bacteria can be produced by non-beta-lactam

antibiotics such as quinolones (27), as well as by physical

conditions such as release from hydrostatic pressure (28) and

by growth conditions (29), the filamentation of a gram-negative

rod caused by sub-inhibitory concentrations of a phenothiazine

may not involve a direct effect on the PBP itself. 

Phenothiazines have been shown to reduce the adherence

of gram-negative bacteria to epithelial cells (30, 31). The

phenothiazine promethazine prevents the recurrence of

pylonephritis caused by E. coli in pediatric subjects (32) and,

because the concentration of this phenothiazine required to

inhibit the growth of bacteria is well beyond that clinically

relevant, the successful therapy of recurrent pylonephritis is

probably due to the effect the phenothiazine has on the

adherence of E. coli to the epithelium of the urinary bladder,

the latter being a pre-requisite for eventual development of

pylonephritis. Although the effects of a phenothiazine on

structures of the gram-negative bacteria needed for adherence

such as pili (33), or its effects on molecules present on the

surface of epithelial cells that are to a lesser extent required

for the adherence of the bacterium (34), have not yet been

fully studied, it seems probable that phenothiazines do inhibit

adherence by inhibiting pili formation, much as is true with

low concentrations of antibiotics (35), as well as by interfering

with access by bacterial pili to receptors present on the surface

of the epithelial cell. 

The in vitro and ex vivo antibacterial activities of

phenothiazines described most probably account for cures

of bacterial infections treated with phenothiazines. Mice

infected with Salmonella typhimurium can be cured with

trifluoperazine (36) or fluphenazine (37), by a combination

of trimethoprim and trimeprazine (38). Pre-treatment with

10-[n-(phthalimido)alkyl]-2-substituted-10H-phenothiazines

or 1-(2-chloroethyl)-3-(2-substituted-10H-phenothiazines-

10-yl)alkyl-1- ureas protected the animals from lethal

infection of E. coli to various extents (39); and mice infected

with Mycobacteria could be cured with methdilazine (40). 

The curative effects of chlorpromazine on humans

presenting with bacterial infections are also known and have

been reviewed elsewhere (1, 2, 4). Although there currently

exists sufficient support for the use of phenothiazines,

especially the far less toxic thioridazine, for the therapy of

problematic infections caused by antibiotic-resistant

bacteria, their use is not recommended at this time unless

there is a need for compassionate therapy, i.e., nothing else

is available. 
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Antimalarial Activity

The antimalarial activity of phenothiazines has been known

for over a century (41). However, because chloroquine has

been so effective for the major part of this period, there was

no need for another antimalarial. This situation has, of

course, changed given the global advent of increasing

antimalarial-resistant infections (42). Because there are no

effective antimalarial drugs other than chloroquine available

to indigenous people who reside in areas of the world where

malaria is still the major lethal infection (43), there is a dire

need for effective antimalarials. CPZ and other

phenothiazines are known to have in vitro activity against

Plamodium falciparum (44-46). CPZ effectively cures the

Aortus monkey of a P. falciparum infection and reverses

resistance to chloroquine (47). However, since not all

Plasmodia resistant to chloriquine can be made sensitive to

the antimalarial (44), this may indicate strain- and/or

species- based differences with respect to the modulation of

antimalarial resistance by the phenothiazine. Although no

study to date has tested the effectiveness of TZ as an

antimalarial, it is highly probable that it, too, may be as

effective as CPZ (41). 

Antiprotozoan Activity

Leishmaniasis is an infection caused by protozoa belonging

to the genus Leishmania.

The disease, expressed in humans as cutaneous, visceral

and mucocutaneous leishmaniasis, has a wide

epidemiological range; globally, it infects more than 300

million people and accounts for approximately 1 million

deaths per year (48). Therapy for this infection is

problematic since the side-effects produced by conventional

drugs are considerable (48) and, as is the case with bacterial

and malarial infections, resistance to drugs such as

antimonials is quite common today (49). Phenothiazines and

acridines have long been known to have activity against

Leishmania-causing parasites (50, 51), however, the

concentrations needed for this activity are either toxic or

clinically irrelevant (52). Although topical application of

CPZ has been reported to effectively cure cutaneous

leishmania (53), others claim otherwise ( 54). Nevertheless,

because Leishmania is an intracellular parasite, CPZ will kill

the intracellular organism (55). TZ will probably prove to

be as effective against intracellular species of Leishmania. 

Antiviral Activity

CPZ has been shown to have activity against a broad gamut

of viruses ( 2). As early as 1971, it was shown to inhibit the

modification of host cell membranes caused by herpes

simplex (56). Thereafter, it was shown to inhibit the growth

of TBEV (57), inhibit the activity of hepatitis B DNA (58),

lyse a number of viruses (59), inhibit the conjugal transfer

of R and F'lac plasmids (60), inhibit the budding of measles

virus (61) and Sindbis and vesicular stomatatitis virus (62),

inhibit the replication of influenza virus (63), SV40 (64),

arenavirus (65) and HIV (66), block infection of B

lymphocytes by human herpes virus (67,68) and infection of

tissue culture cells by JC virus (JCV) (69). The mechanisms

by which CPZ produces the effects noted may be grouped

as follows: it inhibits binding of virus to receptor of the

plasma membrane (66, 70), it inhibits calcium-dependent

events that take place at the plasma membrane and which

are required for entry of the virus via endocytosis (71), and

it inhibits the replication of DNA primarily by intercalating

between the bases (72,73). 

Although all of the effects of CPZ on the virus itself or

the plasma membrane of its target cell take place at

concentrations which are clinically irrelevant, the drug has

served as a "lead compound" for the synthesis of a variety of

derivatives which have similar activities at significantly lower

concentrations. Moreover, the antiviral activity of the

phenothiazine methylene blue can be substantially enhanced

when the presentation of this compound to a virus takes

place under photo-activation (74). The enhanced antiviral

activity of methylene blue by photo-activation has been

known for over 7 decades and has been only recently

employed successfully for deactivating virus present in blood

transfusion products such as whole blood (75), plasma,

platelet concentrates and coagulation factors (76,77), and

cryoprecipitates and cryosupernatants (78). The successful

use of photo-activated methylene blue has prompted

consideration that this approach may have some value for

managing problematic viral infections (74). 

Antiprion Activity 

CPZ and acridines have been shown to eliminate the

presence of prions of infected mouse neuroblastoma cells

chronically infected with the prion PrP(Sc). (79). These

results were employed for effective but temporary therapy

of two young women presenting with nvCJD (2). The

theoretical mechanism by which phenothiazines destroy

intracellular prions and the suggested treatment of the prion

infections  have been reviewed elsewhere (2, 80).

Plasmid Elimination/Curing Effects of Phenothiazines 

Resistance of a given bacterial species to one or more

antibiotics may be acquired in the host by the transfer of

mobile genetic determinants such as plasmids and

transposons from another unrelated species (81, 82).

Antibiotic-resistant genes present in plasmid-containing

bacteria can cause serious therapeutic failure (83 -86) or
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manifest as a consequence of the selection of the resistant

plasmid-containing strain (87). With these facts in mind,

compounds that can neutralise the potential effects of

plasmid antibiotic-resistant genes in a given bacterial

infection are clinically important. To this extent,

phenothiazines are known to promote the elimination of

plasmids from infected bacteria (88 - 92). The therapeutic

aspects of the antiplasmid effects of phenothiazines and the

mechanism by which the effect takes place are beyond the

scope of the present review and will be reviewed elsewhere. 

Efflux Pumps and Effects of Phenothiazines

To date, all micro-organisms so far studied have been shown

to have a number of efflux pumps which, by extrusion of

obnoxious compounds, afford protection. Although the

efflux pumps of bacteria, fungi, protozoa and parasites have

been extensively reviewed elsewhere (93), the effects of

phenothiazines on these efflux pumps do lower antibiotic

resistance and, in certain cases, account for a complete

reversal of antibiotic resistance. Furthermore, the role of

efflux pumps as a major mechanism for intrinsic, acquired

or adaptive antibiotic resistance merit that these units

receive some consideration in this general review.

Prolonged exposure of cancer cells to a single chemotoxic

agent results in the cells becoming resistant to that agent.

Resistance is not mediated by mutation, but rather by the

induction of energy-dependent efflux pumps that extrude

not only the agent to which they had been exposed, but also

other drugs. These efflux pumps are termed multidrug-

resistant (mdr) and intensive study has shown the mdr

nature of these pumps is caused by transmembrane

xenobiotic transport molecules that belong to the super

family of ATP-binding cassette transporters (94). The main

characteristic of these mdr efflux pumps is that the energy

required for transport of one or more unrelated molecules

is derived from the activity of calcium-dependent ATPase,

and this energy activates a plasma membrane protein p-

glycoprotein (Pgp), which is responsible for binding and

extruding the drug (95). A large number of Pgp transporter

proteins have been described for mammalian cells, some of

which are similar to those present in micro-organisms (96).

Mdr efflux pumps are generally inhibited by the calcium

channel blocker verapamil (97) and, because phenothiazines

inhibit the binding of calcium to calmodulin (98) or

calmodulin-type proteins (99), they have been considered as

potential inhibitors of mdr efflux pumps (100).

Phenothiazines have been shown to inhibit the efflux pumps

that account for antibiotic resistance in cancer cells (100)

and bacteria (8, 100, 101) and reverse antibiotic resistance

of bacteria ( 8, 101, 102). Because verapamil inhibits the

efflux pumps of yeast, protozoa (103-106, ) and parasites

(107) as well as reversing resistance of Plasmodia to

chloroquine (104), it is anticipated that phenothiazines will

also inhibit these and other mdr efflux pumps as well. 

Conclusion

Phenothiazines have broad antimicrobial activity that is

expressed against intracellular antibiotic-resistant bacteria

such as M. tuberculosis, S. aureus and antibiotic-resistant

protozoa such as P. falciparum, at concentrations that are

clinically relevant. Whenever studied, phenothiazines inhibit

ABC type efflux pumps that account for the antibiotic

resistance of the organism. Because phenothiazines inhibit

calcium binding to calmodulin or calmodulin-type proteins,

much in the manner of the calcium channel verapamil, they

may also affect all verapamil-sensitive efflux pumps. The

antimicrobial activity of thioridazine, whenever studied, is

equal to the more toxic chlorpromazine. Therefore, the

relatively mild thioridazine has potential for the therapy of

problematic antibiotic-resistant intracellular infections.

Moreover, this and other phenothiazines may also be useful

as inhibitors of efflux pumps responsible for the antibiotic

resistance of many micro-organisms. 
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