
Abstract. Bone is a highly innervated tissue consisting of
nerve fibers, which contain many neurotransmitters including
glutamate. Recently, a number of studies have identified
functional glutamate receptors in osteoblasts and osteoclasts,
implying that the glutamatergic system has an apparent
regulatory role in bone physiology. This review outlines the
evidence which suggest that the glutamatergic system regulates
bone physiology.

Glutamate is the major excitatory neurotransmitter found in

abundance in nature. However, since the blood-brain barrier

has a very low permeability to glutamate, the brain must

synthesize it de novo. In glial cells, glutamate taken up from

the extracellular fluid may be converted to glutamine, by

glutamine synthetase, and then it is released into the

extracellular space. Glutamine, in its turn, can be taken up

by neurons, converted to glutamate, packaged into synaptic

vesicles and used as a neurotransmitter (Figure 1). Notably,

glutamine of the extracellular space can function as a carrier

of excess ammonium across the blood-brain barrier (1-5).

In the CNS, glutamate is important for synaptic plasticity

and long-term potentiation (LTP). These are mechanisms

by which transient or brief signalling events can potentiate

subsequent trains of depolarizations. At a molecular level,

the initiation of LTP in neurons is dependent on an increase

in intracellular calcium (Ca++), which is caused by the

activation of a postsynaptic type of glutamate receptors

(Glu.Rs) on depolarized cells (6, 7). A high concentration

of glutamate, acting on a specific category of Glu.Rs, can

induce an influx of cations and a collapse of mitochondrial

function that leads to necrosis, so called excitotoxicity. This

neurotoxic action has recently been linked with the

pathophysiology of hypoxic injury, stroke and epilepsy. 

Glutamate, in response to a presynaptic depolarization

event, is packaged into vesicles and is released into the

synaptic cleft. This extracellular glutamate remains

contained within the synaptic cleft and acts on a variety of

glutamate receptors presented on the postsynaptic cell.

Simultaneously presynaptic transporters, located on the

plasma membrane of both glial cells and neurons, are

responsible for the reuptake of the glutamate from the cleft,

enabling its recycling, thus provoking the cessation of the

signalling episode (8, 9). Glutamate transporters acting into

the synaptic cleft have been also implicated in a wide range

of diseases, such as Alzheimer, Parkinsons, glaucoma and

inflammation, where the glutamate concentration is

apparently disrupted (10, 11).

The Glu.Rs can be divided into 2 categories: the ionotropic

(iGlu.Rs) and the metabotropic (mGlu.Rs) receptors (12, 13)

(Table I). The iGlu.Rs are directly gated ion channels having

only excitatory action (12), whereas the mGlu.Rs are

transmembrane receptors that are coupled with G-protein,

activating intracellular signal transduction pathways (14, 15).

The iGlu.Rs are subdivided into 3 groups, NMDA,

AMPA and Kainate receptors, based on their pharmacology

and structural similarities. They are named according to the

types of synthetic agonist that activates them (N-methyl-D-

aspartate, a-amino-3-hydroxy-5-methylisoxazole-4-propionic

acid and kainate). These receptors are multimeric

assemblies of 4 or 5 subunits (Figure 2). Each subunit

possesses 3 transmembrane domains (TMI, TMIII and

TMIV) and one region (TMII) that forms a re-entrant loop,

giving this receptor subunit an extracellular N-terminus and

intracellular C-terminus domain. The long loop between

TMIII and TMIV is exposed to the cell surface and forms

part of the binding domain (12, 16-19).

NMDA receptor (NMDA.R) is a hetero-oligomeric

protein. It is composed of 2 classes of subunits, 2 NR1
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subunits and 2-3 NR2 subunits, that coassemble to form a

tetramer (20) or a pentamer (21). The expression of both

subunits is required to form functional channels. There are 4

separate genes producing 4 NR2 subunits (NR2A-D) (17, 18,

22-24). The NR1 subunit exists as multiple splice variants,

produced by differential splicing of the mRNA derived from

a single gene (17). There is a third subunit, NR3, which is a

regulatory subunit that decreases the NMDA channel

activity. NR3 exists as NR3A and NR3B, products from

different genes (25). NMDA.R requires a co-agonist, glycine.

The glycine binding site is found on the NR1 subunit. The

NR2B subunit also possesses a binding site for polyamines.

The glutamate binding domain is formed at the junction of

the NR1 and NR2 subunits. At resting membrane potentials,

NMDA.Rs are inactive. This is due to a voltage-dependent

block of the channel pore by magnesium ions, preventing ion

flows through. When the membrane is depolarized, Mg2+ is

expelled from the channel, allowing Na+ and Ca2+ to enter.

Thus both glutamate and depolarization are needed to open

the channel (7, 17). The NMDA.Rs are effectively blocked

by APV (2-amino-5-phosphonovaleric acid), PCP

(phencyclidine) and MK801 (dizocilpine) (12).

The AMPA and Kainate receptors are often referred to

together as the non-NMDA receptors. The AMPA receptors

are composed of subunits Glu.R1-4, which are products of

separate genes. All AMPA subunits exist as 2 splice variants

(flip and flop). The alternative splice cassette is found at the

C-terminal end of the loop between TMIII and TMIV. Native

AMPA.R channels are impermeable to Ca2+, a function

controlled by the Glu.R2 subunit. The calcium permeability is

determined by the post-transcriptional editing of the Glu.R2

mRNA, which changes a single amino acid in the TMII region

from glutamine (Q) to arginine (R). Glu.R2(Q) is calcium

permeable while Glu.R2(R) is not. The Kainate receptors are

composed from multimeric assemblies of Glu.R5-7 and 

KA-1/2 subunits. They also undergo both splice variant and

RNA editing. They are impermeable to Ca2+. The drug

CNQX (6-cyano-7-nitroquinoxalone-2,3-dione) blocks both the

AMPA.R and Kainate receptor (26, 27).

The mGlu.Rs are G-protein coupled receptors that have

been subdivided into 3 groups, group I, II and III, based on

sequence similarity, pharmacology and intracellular signalling

mechanisms. mGlu.Rs possess a 7-transmembrane domain

with an extracellular N-terminus and intracellular C-terminus

domain. Group I mGlu.Rs (mGlu.R1, mGlu.R5) are coupled

to PLC, while group II (mGlu.R2, mGlu.R3) and III

(mGlu.R4, mGlu.R6, mGlu.R7, mGlu.R8) are negatively

coupled to adenyl cyclase. These 8 mGlu.Rs are products

from different genes. The mGlu.Rs of Group III have 67-

70% protein sequence similarity and 42-45% similarity with

the mGlu.Rs of Group I and II. Alternative splice variants

are also found for each mGlu.R. The mGlu.Rs can be
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Figure 1. In neurons and glial cells, ·-ketoglutarate is converted to glutamate by glutamate dehydrogenase (reverse reaction). Glutamate released from
a neuron is taken up by glial cells. There glutamate may be converted to ·-ketoglutarate by glutamate dehydrogenase, or it may be amidated to glutamine
by glutamine synthetase. Glutamine, in its turn, is taken up by neurons. Neurons convert glutamine back to glutamate by glutaminase.



selectively activated by ACPD (trans-(1S,3R)-1-amino-1, 3-

cyclopentanedicarboxylic acid) (14, 15, 28) (Figure 3).

A number of proteins have been found to associate with

iGlu.Rs (calmodulin, CaMKII, PKA, PKC and Yotio) and

some cluster to specific iGlu.R family members. This

clustering acts to co-localize iGlu.R with specific

intracellular signalling molecules, thus increasing the

efficiency of transducing the signal and also explaining how

a single episode of glutamate signalling triggers numerous

different intracellular signalling cascades (8, 29-31).

One postsynaptic protein important for the clustering of

Glu.Rs is PSD-95 (postsynaptic density protein of 95 kDa).

PSD-95 is a cytoplasmic protein that contains 3 repeated

domains, important for protein-protein interaction. These

so-called PDZ domains bind a number of cellular proteins.

In PSD-95, the PDZ domains interact with the C-terminal

of the NR2 subunit of NMDA.R and the shaker type of

voltage-gated K+ channel, thereby localizing and

concentrating these proteins together at postsynaptic sites

(32). Also PSD-95 localized intracellular effector proteins

that act downstream of the NMDA.R. One such protein is

nNOs, which catalyzes the production of NO downstream

of Ca2+ influx through NMDA.R (33). The C-terminus

region of the NR1 is anchored to the actin cytoskeleton by

its direct interaction with a-actin 2 (34). AMPA.Rs interact

with a distinct PDZ domain protein called GRIP (31) and

mGlu.Rs interact with another PDZ domain protein called

HOMER (35). Activation of Group I mGlu.R causes

activation of the protein tyrosine kinase Src, by the PKC

pathway. Src is responsible for the tyrosine phosphorylation

of NMDA.R (2A and 2B), thus Src up-regulates the activity

of NMDA.R (36).
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Table I. Glutamate Receptors (Glu.Rs).

ionotropic Glutamate Receptors metabotropic Glutamate Receptors

(iGlu.Rs) (mGlu.Rs)

directly gated ion channels G-protein coupled receptors

excitatory action excitatory or inhibitory action

multimeric assemblies of 4-5 subunits transmembrane receptors

each subunit possesses 4 TMs domains possess a 7 TM domain

3 groups: NMDA, AMPA, Kainate receptors 3 groups: group I, II, III

NMDA Receptor non-NMDA Receptors group I group II group III

(AMPA, Kainate)

flow of ions: Ca2+, Na+, K+ impermeable to Ca2+ mGlu.R1 mGlu.R2 mGlu.R4

tetramer or pentamer specific antagonists: CNQX, NBQX, DNQX mGlu.R5 mGlu.R3 mGlu.R6

(2x) NR1, (2-3x) NR2, (1x) NR3 subunits mGlu.R7

1 gene – 1 NR1 subunit: splice variants mGlu.R8

4 genes – 4 NR2 subunits (NR2A, B, C, D) AMPA Receptors: coupled to PLC negatively coupled to cAMP

2 genes – 2 NR3 (NR3A, B): regulatory subunit 4 genes: Glu.R1-4  subunits

co-agonist: glycine (NR1 subunit) 2 splice variants: flip/flop

: polyamines (NR2B subunit) permeable/impermeable to Ca2+

voltage sensitive: Mg2+ Kainate Receptors: 8 genes – 8 mGlu.Rs

Glu binding domain: at the junction of NR1-NR2 Glu.R5-7, KA-1/2 subunits splice variants

specific antagonists: MK801, APV, PCP splice variants

Figure 2. Ionotropic Glutamate Receptor (iGlu.R). The subunit of iGlu.R
possesses four transmembrane domains (TMI-IV), with an extracellular
N-terminus and intracellular C-terminus domain. The TMII forms a re-
entrant loop. The loop between TMIII and TMIV is exposed to the cell
surface and forms part of the binding domain. The PDZ domain interacts
with the C-terminal of the NR2 subunit of NMDA receptor.



In addition to the Glu.Rs there is the glutamate

transporter family, which has been functionally characterized

and classified into 3 groups based on their substrate

specificity (37). The first (C4-dicarboxylate transporter) is

found in bacteria, while the glutamate/aspartate transporters

and the neutral amino acid transporters are found in bacteria

and eukaryocytes. Sequence analysis of the members of this

family suggests a topology common to all the members of this

family of polytopic membrane proteins, although the

similarity of their amino acid sequences ranges only between

25 and 50% (38).

The bacterial C4-dicarboxylate carriers transport the

tricarboxylic acid cycle intermediates succinate, fumarate

and malate (39, 40). The high affinity substrates for the

mammalian neutral amino acid transporters are alanine,

serine, cysteine and threonine. However, some members

(ACST2 from mice, humans and rabbits) show a broader

substrate specificity and accept glutamine and asparagine

with high affinity and several other amino acids, including

glutamate with lower affinity (41-44). All glutamate

transporters use L-glutamate and L-aspartate as high-

affinity substrates (45-47).

The concentration of the neurotransmitter L-glutamate in

the excitatory synapses of the human CNS is regulated by

Na+-coupled L-glutamate/L-aspartate transporters, which

form the EAAT (excitatory amino acid transporters) family.

Five different transporters of this family have been identified

and cloned to date: EAAT1 (human) /GluT-1/SLC1A3

(human) /GLAST-1 (rat) (45, 48), EAAT2 (human)

/SLC1A2 (human) /GLT-1 (rat) (46), EAAT3 (human)

/SLC1A1 (human) /EAAC-1 (rabbit) (47), EAAT4 (human)

(49), EAAT5 (human) (50). These 5 transporters, products

from different genes, share 50-60% amino acid sequence

identity with each other and show some homology with the

neutral amino acid transporters ASCT1 and ASCT2 and

bacterial glutamate transporters (37). The 5 EAATs are

expressed by different cell types and are susceptible to

different glutamate uptake inhibitors. They are located on

the plasma membrane of glial cells and neurons (51). Studies

confirmed the presence of six membrane-spanning segments

in the N-terminal half of these transporters (45-47). It was

suggested that segment 7 may form a re-entrant loop with

both ends positioned at the extracellular side of the

membrane (52).

The role of the glutamatergic system in bone cells

Apart from the CNS, functional glutamate receptors have

been identified in the adrenal medulla, lung, pancreatic islet

‚ cells, megakaryocytes, guinea-pig ileum, keratinocytes,

heart and bone (53-58). However, since the majority of the

commercially available glutamate receptor antagonists are

specifically designed to readily cross the blood-brain barrier

and modulate neurological function, the role of

glutamatergic signalling in non-neuronal tissues can be

investigated only in vitro. Moreover, because glutamate is a

in vivo 18: xxx-xxx (2004)
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Figure 3. Metabotropic Glutamate Receptor (mGlu.R). The mGlu.Rs possess seven transmembrane domains (TMI-VII) with an extracellular N-terminus
and intracellular C-terminus. The ligand binding domain is localized near the N-terminus. The PDZ domain protein (HOMER) interacts with the C-
terminal of mGluRs.



prerequisite for normal cell growth (thus it is impossible to

culture cells in the absence of glutamate), the in vitro studies

can use only non-competitive antagonists (8, 59).

Nevertheless, the first description of glutamatergic

signalling in bone was reported by Mason et al. (1997), who

demonstrated the expression of GLAST mRNA in active

cuboidal osteoblasts and osteocytes, that was regulated by

mechanical loading of rat bone, in vivo (57). Bone cells are

regulated by circulating hormones and by a number of local

humoral factors, including prostaglandins, growth factors,

cytokines and nitric oxide (60-66). Therefore, it was

suggested that glutamate may be either a paracrine and/or

autocrine regulator in bone physiology.

The origin of glutamate in bone is still unknown. Recently,

it has been demonstrated that bone cells have the machinery

required for glutamate signalling and numerous pre- and

post-synaptic components of neuronal glutamate signalling

have been identified in bone cells (67-71). NMDA.Rs were

the most studied in mature osteoblasts and osteoclasts. A

number of electrophysiological studies showed that

osteoblastic NMDA.Rs display very similar functional

characteristics to those seen in neuronal systems (72, 73).

Mammalian (rabbit) osteoclasts express NR1, NR2B and

NR2D subunits (9, 74). Rat calvaria and MG-63 osteoblast-

like cells also expressed several NR2 subunits, namely

NR2A/B/D (74). Primary and clonal osteoblasts contain

glutamate-filled vesicles similar to those seen in glutamatergic

neurons (71). The NMDA.R clustering protein PSD-95

mRNA was demonstrated in bone marrow cells, osteoblastic

cell lines and mammalian osteoclasts (74, 75). The presence

of AMPA and Kainate receptors have been less studied,

although they were also present in bone cells. In addition,

mGlu.R1b (group I) was identified in rat femoral osteoblasts.

Hinoi et al. demonstrated the expression of group III mGlu.R

(mGlu.R4 and mGlu.R8) in primary osteoblasts isolated from

rat calvaria (72, 76). In addition, 2 glutamate transporters

have been identified in bones. GLAST-1 mRNA was

localized in active cuboidal osteoblasts as well as in

osteocytes, while GLT-1 was expressed in bone marrow cells.

Recently, a splice variant of GLAST-1 (GLAST-1a), lacking

exon 3, was identified in bone (57, 77).

The role of the glutamatergic system in osteoblasts has

been studied in vitro. An NMDA antagonist inhibits cell

differentiation of osteoblasts. In addition, the MK801

antagonist of NMDA.R causes a dose-dependent inhibition

of bone formation, in vitro (78, 79). Apparently, there is a

cross-talk between the different Glu.Rs types, because

mGlu.Rs act to regulate the activity of iGlu.Rs (28). This was

confirmed in studies where mGlu.R1b receptor negatively

regulated the activity of the rat femoral osteoblastic

NMDA.R (72). Recent findings also suggest that the

NMDA.R2C subunit may be required for the inhibitory

modulation of NMDA.R (80). This inhibitory pathway acts

via DAG and PKC activation. PTH also uses this pathway

(81, 82). Notably, it was found that, after application of

NMDA, the [Ca2+] i response was allowed to develop.

Therein 100 nM PTH produced an effect similar to that of

ACPD (mGlu.R agonist), causing [Ca2+] i to fall rapidly to

a point approximately midway between the basal and

NMDA-enhanced levels (72). This was suggestive of potential

interactions among Glu.Rs and PTH regulation in bone cells.

Furthermore, sustained exposure to MK801 inhibited the

expression of (at both the mRNA and protein level) bone

differentiation CBFA1 transcription factor. CBFA1 is a

transcription factor essential for the growth of osteoblasts.

CBFA1 is shown to regulate the expression of several genes

such as collagenase-3, type (1) collagen, osteoprotegerin,

bone sialoprotein, osteopontin, alkaline phosphatase and

osteocalcin. Therefore, the findings that MK801 inhibited

alkaline phosphatase and osteocalcin expression argue in

favor of the idea that MK801 can suppress the expression

of particular genes, which are essential for differentiation

and maturation of osteoblasts, via modulation of CBFA1

DNA binding (83).

In addition, NMDA.Rs are expressed throughout the

differentiation of osteoclasts and antagonists of NMDA.Rs

acted to modulate both osteoclastogenesis and osteoclast

activity (84). MK801 reduced the number of resorption pits

on cortical bone slices without affecting the osteoclast

attachment onto bone and osteoclast survival. In addition,

it rapidly decreased the percentage of osteoclasts with actin

ring structures, a characteristic associated with actively

resorbing osteoclasts (84, 85). Moreover, studies using the

co-culture system of maturing osteoclastic precursors by

simultaneously culturing them with pre-osteoblasts have

shown that non-competitive NMDA.R antagonists inhibited

osteoclastogenesis, in vitro. The effects of NMDA.R

antagonists may be due to modulating the osteoblastic

activity/phenotype of pre-osteoblast present within these

cultures, which would have the secondary effect of inhibiting

osteoclastogenesis (8, 59). Furthermore, the protein tyrosine

kinase Src was shown to increase the tyrosine

phosphorylation of NMDA.R (2A and 2B), thus Src

probably up-regulates the activity of NMDA.R. Intrestingly,

because Src is highly expressed in osteoclasts, it has been

postulated that the control of the Src protein in osteoclasts

may provide a new therapeutic approach to prevent

osteoporosis (86, 87).

Conclusion

A number of studies have identified a possible role for the

glutamatergic system in bone physiology, mainly because

glutamate receptors have been identified in bone cells

(osteoblasts and osteoclasts). However, the origin of

glutamate in bone is still ambiguous. The fact that bone is
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highly innervated and that skeletal nerve fibers contain

many neuromediators implies that there is a neuronal

control of bone formation and bone remodeling. Further

work is required to characterize cell lines of osteoblast-like

and osteoclast phenotype, to determine the molecular

mechanisms of glutamatergic action on bone cells, via
iGlu.Rs and/or mGlu.Rs activated intracellular signal

transduction pathways. The latter could possibly provide the

basis of novel therapeutic approaches to treat bone diseases.
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