
Abstract. Nitric oxide (NO) is a gaseous messenger involved
in atypical forms of intercellular communications, able to exert
a strong functional modulation of several neurotransmitter
systems. In particular, NO heavily influences the excitatory
neurotransmitter glutamate, mainly through NMDA receptors,
and the inhibitory neurotransmitter GABA, mainly through
GABA A receptors. Due to the involvement of glutamate and
GABA in a delicate balance conditioning the functional status
of the neural cells, this interaction suggests a role for NO in
regulating neuronal excitability and its transition towards
hyperexcitability phenomena. This article reviews the main
knowledge about the relationships existing between the activity
of the NO system and the experimental aspects of epilepsy,
focusing on the somewhat antithetic findings about the
proconvulsant or the anticonvulsant roles exerted by nitric oxide.

Nitric oxide

Nitric oxide (NO) is a labile, gaseous messenger first

identified in the blood vessels as the endothelial-derived

relaxation factor (1, 2). In the brain it is able to mediate

many neuronal processes, thus influencing the cell’s

activity. In fact, it seems to play a crucial role in a new form

of interneuronal communication, characterised by the

absence of synaptic contacts and a high affinity and

selectivity between the released transmitter and the

affected receptors (3, 4). It also participates in the

modulation of the release of classical neurotransmitters,

representing a physiological linkage between synaptic and

non synaptic interactions in the context of brain function.

Through this modulatory action, NO strongly influences the

excitability status of neurones, either in basal conditions or

during paroxysmal activity. 

Biosynthesis and mechanism of action. NO is synthesised

directly from arginine by nitric oxide synthase (NOS),

which is able to catalyse the oxidation of one of the

guanidine groups of arginine, to produce NO through the

formation of citrulline. Three different isoforms of NOS

have been identified: neuronal NOS (nNOS), endothelial

NOS (eNOS) and macrophage or inducible NOS (iNOS)

(5-7). In order to exert their actions, all NOS isoforms need

co-factors represented by flavin adenine dinucleotide

(FAD), flavin mononucleotide (FMN) and nicotinamide

adenine dinucleotide phosphate (NADPH). NOS is divided

into two sub-units: the catalytic site, which is able to oxidise

L-arginine, and the binding site for L-arginine. Both sub-

units are constituted by both a reductase and an oxygenase

domain, which are able to bind calmodulin in a Ca2+-

dependent manner. The Ca2+-calmoduline complex

regulates only nNOS and eNOS; on the contrary, the iNOS

shows Ca2+-independent properties (3, 8). nNOS is Ca2+-

and NADPH-dependent, in fact the influx of Ca2+ activates

nNOS through the phosphorylation of a protein kinase C

(9). eNOS shows constitutive characteristics similar to

those of nNOS and several brain areas contain, at the same

time, nNOS and eNOS (10). NO can easily reach the

membranes of adjacent neurones (until 300 Ìm), it is not

characterised by polarity and it presents a half-life of a few

seconds (11). NO penetrates the neuronal membrane and

activates a soluble guanylyl cyclase (sGNC), a

heterodimeric molecule which contains a heme group

characterised by a high affinity for NO, to form cGMP. In

fact, the experimental use of inhibitors for guanylyl cyclase,

such as methylene blue or LY83583, blocks the

modifications induced by the local application of NO

donors (12). On the other hand, cGMP acts in the context
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of neurones through several mechanisms: i) modification of

the activity of Ca2+ and Na+ channels, ii) activation of

protein kinase and iii) modulation of phosphodiesterase

(11). Furthermore, other experimental investigations have

demonstrated cGMP-independent NO modality of action:

i) NO can rapidly interact with superoxide anions to form

peroxynitrite (ONOO-) which causes cell death (13); ii) NO

is also able to S-nitrosylate ion-channels through a slow

kinetic; this mechanism is involved in the control of

membrane excitability and in more complex cerebral

circuits (14).

Distribution of NO synthesising system. The NO synthesising

system is distributed throughout the CNS but the co-

localisation between the NOS system and sGNC has been

only occasionally described. This experimental observation,

together with the spatial proximity between NOS-positive

and sGNC-positive structures, demonstrates that NO can

function as an intercellular neuronal messenger in the range

of 20-100 Ìm (11, 15). A lot of in vivo and in vitro techniques

have been used to reveal the presence of NOS and sGNC

throughout the brain (15). NOS and cGMP activities were

found in the context of frontal, parietal, cingulate and piriform

cortices. Similarly, the caudate-putamen complex and the

globus pallidus showed abundance of NOS activity. In the

context of the diencephalon, lateral and medial habenular

nuclei revealed the presence of NOS and cGNC activities, but

in thalamic reticular formation, in the subthalamic nucleus,

hypothalamus, suprachiasmatic nucleus, nucleus arcuate,

median eminence and mammillary region no co-localisation

between the two activities was highlighted. In the context of

the mesencephalon, an abundant presence of NOS activity

was revealed in the substantia nigra and pretectal nucleus. In

the cerebellum, and in particular in the context of Purkinjie

cells, it is possible to evidence the existence of a co-localisation

between NOS and cGNC activities. Also pons and medulla

oblongata show rich NOS and cGNC activities. An alternative

modality to detect the NOS activity was performed through

the evaluation of the distribution of NOS mRNA using an

antisense-strand probe. Higher levels of nNOS mRNA were

evidenced in the context of the olfactory bulb and in the

cerebellum, in the caudate/ putamen complex associated with

the entire ventral striatum structures. Furthermore, in the

hippocampus a diffuse presence of neurones exhibiting a

moderate but significant presence of nNOS mRNA was

highlighted, associated with small areas with a strong presence

of nNOS mRNA (16).

Interaction with glutamate and GABA

Much research has demonstrated that NO or NO donors

are capable of significantly increasing the release of

glutamate from excitatory synapses (17,18). Subsequently,

other experimental observations have demonstrated that

the modulation of glutamate release is strictly related to

the level of NO in the context of cerebral tissue. In fact,

low concentrations of cerebral NO or treatment with low

doses of NO donors caused the reduction of neuronal

glutamate release (19). On the contrary, in the context

of the same experimental observations, elevated

intracerebral NO levels and/or NO donor treatment at

high concentrations caused a significant increase of

glutamate outflow (19). The biphasic effect seems to be

strictly linked to the intracellular level of cGMP, which is

involved in mediating the glutamatergic response.

Several experimental lines have demonstrated that the

functional interaction between NO and glutamate could

take place at different levels of the synaptic terminal. In

particular, NO may act at the level of the pre-synaptic

membrane by inhibiting glutamate release through the

functional inactivation of the thiol group of the redox site

of the NMDA receptor complex (20-22). Furthermore, the

reduction of glutamate availability induced by NO through

the removal of extracellular glutamate by activation of glial

cells has also been demonstrated (23). Finally, a post-

synaptic functional interaction has been reported by a

down-regulation of NMDA receptors in strict relation to

the extracellular levels of NO or free radicals including

superoxide (21, 24). All the reported experimental

observations demonstrate that the interaction between NO

and glutamate in the context of a putative neuroprotective

or neurotoxic effect still remains controversial. In fact, the

reduction of cerebral NO levels, obtained through systemic

or intracerebral administration of NOS inhibitors, causes

a significant increase of extracellular glutamate and

ensuing ischemic/neurotoxic damage (25, 26). Research

has also demonstrated that NO is produced in response to

NMDA receptor activation. In fact, during sustained

depolarization of NMDA-type glutamatergic post-synaptic

receptors, the following calcium influx causes the

activation of nNOS (17). 

Although NO is widely considered to be functionally

linked to glutamate activity, a relationship between NO

activity and the inhibitory GABA has been highlighted (27).

In particular, it has been demonstrated that NO or NO

donors, such as 3-morpholinosidnonimine (SIN1) or S-

Nitroso-N-acetylpenicillamine (SNAP), or NO precursors,

such as L-arginine, increase inhibitory post-synaptic

potentials (IPSP) frequency as the result of local activation

of GABAergic neurones (28, 29). On the other hand, many

experimental observations have demonstrated a co-

localisation between NOS and GABA (e.g. in the context of

cuneate nucleus, periaqueductal grey, ventral geniculate

nucleus and the I and II superficial laminae of the spinal

dorsal horn) (30-33). More recently, it has been shown that

the different isoforms of NOS activity are able to
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Figure 1. Depth EEG recordings in the hippocampus of male urethane-anaesthetised Wistar rats (220 - 280 g) treated with increasing doses of L-NAME (0.5 -
50 mg/kg body weight, intraperitoneal). Top : locations of the coaxial bipolar recording electrodes in the sterotaxic planes explored (IL : interaural line). Bottom:
representative EEG traces showing the effects of different doses of L-NAME on the bioelectric hippocampal activity. Trace 1 : spontaneous basal activity. Traces
2, 3, 4, 5 : activity recorded after L-NAME administration. Note the interictal epileptic activity in trace 4 and the afterdischarge in trace 5. All effects evoked by L-
NAME treatment had an onset latency of 5-10 min and a duration of 30-39 min (modified, from Ferraro et al., Epilepsia 40: 830-836, 1999).



simultaneously modulate the excitatory versus inhibitory

neurotransmission, probably in relation to their specific

neuronal localisation (34). All the data suggest that NO

seems to be a linkage between excitatory and inhibitory

neurotransmission in physiological and pathological

conditions and it functions as an efficacious regulator of

neuronal excitability. 

Interaction with other neurotransmitters

A functional relationship between NO activity and

cholinergic neurotransmission has been demonstrated. In

particular, NO could have an anterograde and/or retrograde

influence on different cholinergic neurones and the majority

of cholinergic neurones, particularly in the context of the

cerebral cortex, basal ganglia and hippocampus, is coupled

to NO-mediated cGMP synthesis (35, 36). An indirect NO-

mediated increase of acetylcholine (ACh) release has been

demonstrated in the hippocampal formation (37).

Furthermore, endogenous NO is able to influence

neighbouring excitatory neurones which, in turn, increase

the cholinergic input (38).

In various regions of the CNS a functional relationship

between NO and dopamine (DA) has been demonstrated

(39). In particular, the experimental treatment with L-

arginine, a precursor of NO, or NO donors, such as

hydroxylamine, sodium nitroprusside (SNP) and Roussin’s

black salt (RBS), induces an augmentation of the DA

release, suggesting that endogenous NO stimulates DA

activity (40). More recently, in the context of the frontal

cortex and raphe nucleus a biphasic effect of NO on

NMDA-evoked release of DA was demonstrated, suggesting

a crucial role exerted by the redox state of the NMDA

receptor and the ability of NO to influence the various

subtypes of GLU receptors in a different manner (41). 

Studies performed on hippocampal slices demonstrate a

direct relationship between NO or NO donors and the

increase of the release of norepinephrine (42). Furthermore,

NO is capable of increasing the release of noradrenaline

induced by NMDA receptor activation in the context of both

the hippocampus and the cerebral cortex (43, 44).

The relationship between NO and serotonin has been

investigated in the context of the striatum, locus coeruleus

and hypothalamus. In particular, it has been demonstrated

that NO donors increase the serotonin production in the

striatum (45). On the contrary, the NO-induced

hypothalamic influence shows a biphasic effect: NO donors,

administered at low or high doses, cause a decrease or

increase of serotonin production, respectively, and all these

effects are mediated by cGMP functional involvement (46).

Finally, in the locus coeruleus, NO donors or L-arginine

treatment causes an increase of serotonin production (47).

All these experimental results show a significant

relationship between cerebral levels of NO and the

augmentation of serotonergic neurotransmission, but a

controversy still remains about a functional involvement of

glutamate neurotransmission in this interaction.

Nitric oxide and experimental epilepsy

Nitric oxide is supposed to have an important role in the

genesis and/or the maintenance of several diseases of the

CNS. In particular, in the last 10 years a strong influence of

NO in various experimental models of epilepsy has been

documented. However, definitive conclusions are still not

available about an anti-convulsant and/or pro-convulsant

role exerted by NO. 

Evidence for an anticonvulsant role. The first hypotheses about

an anticonvulsant/neuroprotective role exerted by NO were

reported ten years ago and the term "endogenous"

anticonvulsant substance was introduced in the literature in

relation to the functional action of NO in physiology and

pathology (48). In particular, in an experimental model of

generalised epilepsy, induced by the intraventricular injection

of NMDA, the pharmacological blockade of nNOS caused an

increase of both the duration and the severity of seizures (48).

Subsequently, a direct relationship between the decrease of

cerebral NO levels and a facilitatory effect on the genesis

and/or the course of both focal and generalised seizures was

demonstrated (49-51). Moreover, the use of a precursor such
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Figure 2. Surface EEG recordings in the somatosensory cortex of male
Wistar rats (same experimental conditions as in Fig. 1) treated with L-
NAME (0.5 – 50 mg/kg body weight, intraperitoneal). Top : location of
the cortical silver chloride ball electrodes. Bottom : representative EEG
traces showing the effects of different doses of L-NAME on the bioelectric
activity of the somatosensory cortex. Trace 1 : spontaneous basal activity.
Traces 2 and 3 : cortical interictal activity after L-NAME administration.
All effects evoked by L-NAME treatment had an onset latency of 7-10 min
and a duration of 30-34 min (modified, from Ferraro et al., Epilepsia 40:
830-836, 1999).



as L-arginine showed an efficacious action in decreasing the

susceptibility to seizure, comparable to the common

antiepileptic drugs, suggesting a potential involvement of NO

as an anticonvulsant (51, 52). Further data revealed a

significantly increased susceptibility to convulsions in animals

treated with inhibitors of NOS (53). Recent experimental

observations have demonstrated a relative natural protection

against pentylenetrazol-induced seizures in immature rats

which show a high availability of L-arginine, a precursor of

NO (54). Different hypotheses have been suggested to explain

the putative anticonvulsant action exerted by NO: 1) it could

act via a negative feedback on the NMDA receptor through a

competitive blockade of the recognition site; 2) it could

functionally interact with the redox modulatory site, either in

basal conditions or during all the pathological events

characterised by the "overactivity" of the NMDA receptor

complex (20, 55). On the other hand, other experimental
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Table I. Nitric oxide as anticonvulsant.

Model Animal Structure Reference

NMDA Mice Gen. seizures Buisson et al. (1993) (48)

LTP Rat CA1 Williams et al. (1993) (88)

Kindling Rat Gen. seizures Herberg et al. (1995) (52)

Iron ion Rat Cerebral cortex Kabuto et al. (1996) (50)

Aminopyridine Rat Neocortex Boda et al. (1996) (49)

PTZ Mice Gen. seizures Przegalinski et al. (1996) (51)

DMCM Mouse Gen. seizures Tsuda et al. (1997) (58)

Kainate Rat Hippocampus Alabadí et al. (1999) (89)

Basal conditions Rat Hippocampus/cortex Ferraro et al. (1999) (59)

Figure 4. Effects of the pharmacological modifications of NO levels on
Maximal Dentate gyrus Activation (MDA). Trace 1 - representative depth
EEG trace of MDA in control animals. Trace 2 - effect of 7-Nitro-
indazole (7-NI, nNOS inhibitor, dose of 50 mg/kg body weight) on MDA
parameters: increased onset latency, decreased MDA duration, decreased
afterdischarge duration and population spike’s frequency. Trace 3 - effect
of L-arginine (L-Arg, NO donor, dose of 1 mg/kg body weight) on MDA
parameters: decreased onset latency, increased MDA duration, increased
afterdischarge duration and population spike’s amplitude.

Figure 3. Studied parameters of Maximal Dentate gyrus Activation
(MDA) obtained in male urethane-anaesthetised Wistar rats (220 – 280
g) through the electrical stimulation of the Angular Bundle for 10 sec
(train of 0.3 ms biphasic pulses, intensity 100 – 800 ÌA, 20 Hz). A:
Angular Bundle stimulating train duration. B: MDA onset latency. C:
MDA duration. D: afterdischarge duration. Spike amplitude, number and
frequency were also measured.



observations, together with the analogies between the role of

NO and GABA in the generalised decrease of neuronal

excitability (56), have suggested the possibility that NO and

GABA can act synergically in the neuroprotective and/or

antiepileptic action (32). An interesting link between NMDA

receptor activity, increase of NO activity and potentiation of

GABAergic neurotransmission has been proposed to explain

the aggravation of seizures induced by NOS inhibitors either

in a generalised model of experimental epilepsy, due to the

blockade of GABAA receptors or in focal hippocampal

penicillin epilepsy (57, 58). Our experimental results have

demonstrated that a severe reduction of cerebral NO causes

an increase of neuronal synchronisation in both the

hippocampal formation (Figure 1) and the cerebral cortex

(Figure 2) in non epileptic rats. In particular, we have shown

that the inhibition of NOS, obtained through non-selective or

brain-selective NOS inhibitors, causes a marked modification

of the bioelectric activity of both these neural structures, until

it evokes an epileptiform activity as evidenced by the presence

of spikes, polyspikes, or spikes and waves, collectively called

interictal discharge activity. Furthermore, we have recognised

the appearance of afterdischarges (ADs) in the hippocampal

formation (Figure 1) following a severe reduction in NO

cerebral availability (L-NAME i.p. administration at high

doses). All these effects were completely abolished by pre-

treatment with NMDA receptor antagonists such as 2-AP5

and MK-801, and partially reduced by pre-treatment with

CNQX, a non-NMDA receptor antagonist (59). These data

demonstrate a strong link between NO and the glutamate

system in the genesis of epileptic hyperexcitability, without any

kind of interference due to type and aetiology of seizures,

genetic factors or, in general, methodological differences that

have been re-proposed recently (27, 60, 61). Significantly, all

the NOS inhibitor-mediated excitatory effects were abolished

by the pre-treatment with different types of NMDA and non-

NMDA receptor antagonists. All the results, in agreement

with the data existing in the literature reported in Table I,

constitute further support for a natural neuroprotective/

anticonvulsant role exerted by NO. In this context, a co-

operative effect between NGF and NO has been investigated,

which demonstrates that NO regulates NGF gene expression

through the cGMP pathway (62). It has also been

hypothesised that chronic delivery of NGF causes a

stimulatory effect of neuronal NOS synthesis, reducing,

through a regulatory feedback loop, the effects of the

inhibition of neuronal NOS activity (63). Finally, NO

production may be up-regulated by NGF, suggesting a

powerful and rapid co-ordinated action (64).

Evidence for a pro-convulsant role. It has been hypothesised that

NO could also act as a pro-convulsant agent, inducing seizures

through a complex mechanism involving a functional alteration

of the control of vascular motility. In fact, the functional

involvement of NO has been hypothesised in the neurotoxicity

phenomenon induced by the activation of NMDA receptor

during the epileptic disorder related to the modification of

cerebral blood flow (CBF) (65-67). Furthermore, several

conditions associated with the appearance of seizures related

to the vasodilation seem to be prevented or delayed by

preliminary treatment with NOS inhibitors (68). More recently,

in the context of a model of experimental epilepsy, obtained

through intrahippocampal injection of kainic acid, an increase

of NOS activity was demonstrated. This observation suggests

a direct relationship between the cerebral level of NOS and the

severity of the epileptiform phenomena (69). All these

experimental observations highlight a functional involvement

of NO in excytotoxic/proconvulsant mechanisms in the CNS

suggesting a potential implication in a new therapeutic

approach (70). In this regard, we have tested the role of NO

in another model of experimental epilepsy: the "maximal

dentate activation" (MDA, Figure 3), considered an example

of reverberatory seizure activity in the context of the
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Table II. Nitric oxide as a proconvulsant.

Model Animal Structure Reference

Reverberatory epilepsy Rat Hippocampus Stringer and Erden (1995) (71)

Bicuculline Rat Frontal cortex Pereira de Vasconcelos et al. (1995) (90)

Hereditary convulsion Chick Forebrain Sandirasegarane et al. (1996) (91)

Pentylenetrazole (PTZ) Mice Gen. seizures Urbanska et al. (1996) (53)

Bicuculline Rat Pyriform cortex Proctor et al. (1997) (92)

Penicillin Rat Hippocampus Lu et al. (1998) (57)

EL mice Mice Hippocampus Murashima et al. (2000) (93)

Kainate Rat Cortex Huh et al. (2000) (94)

PTZ-induced kindling Rat Hippocampus Han et al. (2000) (95)

Amygdala kindling Rat Gen. Seizures Borowicz et al. (2000) (96)

Kainate Rat Hippocampus Yasuda et al. (2001) (69)

MDA Rat Hippocampus Ferraro et al. (2004) (73)



hippocampal-parahippocampal circuit (71). It was

demonstrated that repeated seizures are strictly linked to the

modifications of NADPH diaphorase activity, which is

considered a marker of NO synthesis (72). Then, using this

model of experimental epilepsy, we modified the level 

of endogenous NO through the administration of 

7-nitroindazole and L-arginine, a precursor of the synthesis of

NO, in order to verify the modifications induced to both the

onset time and the duration of the ictal events (Figure 4). The

inhibition of nNOS caused an increase of the MDA onset time

and a decrease of MDA and AD duration. On the contrary,

the administration of L-arginine caused opposite effects: a

decrease of the MDA onset time and an increase of MDA and

AD duration (73). Studies evidencing the proconvulsant role

of NO are reported in Table II.

Taking into consideration the large number of

experimental studies showing a proconvulsant versus an

anticonvulsant effect of NO, it has been hypothesised that

such a variability could depend on either the model of seizure

employed, or genetic factors or methodological differences.

In spite of the significant influences exerted by all these

variables, all the experimental observations, showing both

pro-convulsant and anticonvulsant NO- induced effects,

recognise the crucial role of the redox site of the NMDA

receptor complex whose pharmacological manipulation is

able modify the course of experimental epilepsy (74). 

Nitric oxide and other neurological disorders

The role of NO has been widely investigated in several

experimental models of other common neurological disease

such as the ischemic stroke (75-77). In particular, it has been

shown that activation of the endothelial form of NOS exerts

a protective action against the neurotoxic effects caused by

the cerebral ischemia. On the contrary, the increased activity

of nNOS and/or iNOS induced an aggravation of the

excytotoxic phenomena (75, 78). Study of the involvement of

nitric oxide in the context of ischemic damage in humans

showed that the increase of NO levels due to the activation

of inducible NOS activity is not related to the release of

glutamate and calcium influx (79). On the other hand, the

increased levels of cerebral NO can promote the apoptotic

events following a severe brain ischemia (80). 

A severe neurodegenerative disorder such as Alzheimer’s

disease has been related to the activity of the NO system. In

fact, several investigations have revealed that the neurotoxic

role exerted by NO in the context of the CNS could be

responsible for this neurodegenerative disorder; the event

could be based on the excessive calcium influx which is the

key of the oxidative stress (81). 

Further, in schizophrenia the involvement of nitric oxide

has been hypothesised. In particular, it has been shown that

the inhibition of nNOS could be responsible for the low

levels of nitrates and cyclic GMP evidenced in patients

affected by schizophrenic disease (82). 

Another neuropsychiatric disorder, namely catalepsy, was

investigated in mice and the results have highlighted a

relationship with NO activity: in fact, high levels of NG-

nitro-L-arginine, an efficacious inhibitor of neuronal NOS,

caused motor effects in mice quite similar to those shown

by cataleptic subjects (83). Furthermore, an elevated NOS

activity was demonstrated in pyramidal neurones and its

neuroprotective effects were evidenced against the reactive

oxygen damage induced by pathological ageing (84). 

Finally, it has been demonstrated that the inhibition of

nNOS could be responsible for an increase of aggressive

behaviour, showing a putative functional involvement of NO

in adverse behaviour (85).

Concluding remarks

Although the role of NO as an unconventional transmitter in

the CNS was discovered only a few years ago, its functional

involvement in brain physiology and pathophysiology has been

widely demonstrated. In this regard, the influence of the NO

system on normal and paroxysmal neuronal excitability

constitutes an interesting field of research, aiming to explore

possible and innovative approaches to the pharmacological

control of epileptic phenomena (86, 87). According to the

literature reviewed in this article, our study has highlighted

opposing effects (proconvulsant vs anticonvulsant) induced by

using several drugs which modify the cerebral availability of

NO. Furthermore, in this review we have reported and

discussed evidence supporting either the pro-convulsant/

zneurotoxic or the anticonvulsant/neuroprotective effects, or

both. Although no definitive conclusions are possible yet, one

can observe that the NO system, characterised by a surprising

functional adaptability, is able to induce totally differing effects

on neuronal hyperexcitability, in relation to the modifications

induced on neighbouring neurotransmitters by the different

epileptic models.
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