Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • In Vivo
    • Anticancer Research
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
In Vivo
  • Other Publications
    • In Vivo
    • Anticancer Research
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
In Vivo

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Visit iiar on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies
Open Access

Co-mutation of ASXL1 and SF3B1 Predicts Poorer Overall Survival Than Isolated ASXL1 or SF3B1 Mutations

JINMING SONG, LYNN MOSCINSKI, ETHAN YANG, HAIPENG SHAO, MOHAMMAD HUSSAINI and HAILING ZHANG
In Vivo May 2023, 37 (3) 985-993; DOI: https://doi.org/10.21873/invivo.13172
JINMING SONG
1Department of Hematopathology, Moffitt Cancer Center, Tampa, FL, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Jinming.Song@moffitt.org
LYNN MOSCINSKI
1Department of Hematopathology, Moffitt Cancer Center, Tampa, FL, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ETHAN YANG
2Berkey Preparatory School of Tampa, Tampa, FL, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HAIPENG SHAO
1Department of Hematopathology, Moffitt Cancer Center, Tampa, FL, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MOHAMMAD HUSSAINI
1Department of Hematopathology, Moffitt Cancer Center, Tampa, FL, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HAILING ZHANG
1Department of Hematopathology, Moffitt Cancer Center, Tampa, FL, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: Mutations in the ASXL transcriptional regulator 1 (ASXL1) and splicing factor 3b subunit 1(SF3B1) genes are commonly observed in myeloid neoplasms and are independent predicative factors for overall survival (OS). Only a few contradictory reports exist on the clinical significance of concurrent ASXL1 and SF3B1 mutations. Previous studies also did not exclude patients with mutations of other genes, which could be confounding factors. Materials and Methods: We identified 69 patients with mutation of only ASXL1, 89 patients with mutation of only SF3B1, and 17 patients with mutations exclusively of both ASXL1 and SF3B1 from our database of 8,285 patients and compared their clinical features and outcomes. Results: Patients with ASXL1 mutations more frequently had acute myeloid leukemia (22.47%) or clonal cytopenia of unknown significance than patients with SF3B1 mutations (1.45%) or with ASXL1/SF3B1 mutations (11.76%). Patients with SF3B1 or ASXL1/SF3B1 mutations were more frequently diagnosed with myelodysplastic syndrome (75.36% and 64.71%, respectively) than patients with ASXL1 mutations (24.72%). Patients with ASXL1/SF3B1 (23.53%) mutations more frequently had myelodysplastic/myeloid proliferative neoplasm than did patients with ASXL1 mutations (5.62%) or with SF3B1 mutations (15.94%). OS of the ASXL1 mutation-only group was worse than that of the SF3B1 mutation-only group with a hazard ratio of 5.83 (p=0.017). Finally, and most importantly, the OS of the ASXL1/SF3B1 co-mutation group was poorer than that of both single-mutation groups (p=0.005). Conclusion: ASXL1/SF3B1 co-mutations portend worse OS than isolated ASXL1 or SF3B1 mutations, which might be due to abnormalities in both the epigenetic-regulatory and RNA-splicing pathways or because two genes instead of one are mutated.

Key Words:
  • ASXL1
  • SF3B1
  • mutations
  • myeloid
  • myelodysplastic syndrome
  • acute myeloid leukemia
  • myeloproliferative neoplasm

The additional sex combs-like 1 (ASXL1) gene on chromosome 20q11 is involved in gene expression and epigenetic regulation and is a tumor-suppressor gene (1, 2). Somatic mutations in ASXL1 are frequently observed in myeloid malignancies, including clonal cytopenia of unknown significance (CCUS) (3-5), myelodysplastic syndrome (MDS) (6-8), myeloproliferative neoplasm (MPN) (9-14), MDS/MPN (mostly chronic myelomonocytic leukemia, CMML) (1, 15-17), and acute myeloid leukemia (AML) (8, 18-20). ASXL1 mutations in myeloid neoplasms are typically frameshift or nonsense mutations near the last exon and result in the expression of a C-terminally truncated mutant ASXL1 protein and are an independent predicative factor for poor overall survival (OS) and poor event-free survival in patients with AML (6, 20).

Splicing factor 3B subunit 1 (SF3B1) gene on chromosome 2q33.1 participates in pre-mRNA splicing (21, 22). Mutations in SF3B1 are also frequently detected in the above hematopoietic disorders. Patients with SF3B1 mutations represent a distinct patient group, particularly associated with the presence of ring sideroblasts (23, 24). Some studies have associated SF3B1 mutations with favorable clinical prognoses (23, 25, 26), whereas other studies showed contradictory correlations (7, 13, 27, 28).

ASXL1 mutations have been found to coexist frequently with mutations of other genes, including TET methylcytosine dioxygenase 2 (TET2), isocitrate dehydrogenase isocitrate dehydrogenase (NADP+) 1 (IDH1), IDH2, U2 small nuclear RNA auxiliary factor 1 (U2AF1), serine and arginine-rich splicing factor 2 (SRSF2), CCAAT enhancer-binding protein alpha (CEBPA), RUNX family transcription factor 1 (RUNX1), GATA-binding protein 2 (GATA2), NRAS proto-oncogene (NRAS), Janus kinase 2 (JAK2), stromal antigen 2 (STAG2), and SET-binding protein 1 (SETBP1) (18-20, 29-33). However, ASXL1 mutations were reported to be mutually exclusive from those of DNA methyltransferase 3 alpha (DNMT3A), FMS-related receptor tyrosine kinase 3 (FLT3–ITD), and nucleophosmin 1 (NPM1) (18, 29, 34, 35). For mutations of SF3B1, TET2 was the most commonly co-mutated gene, followed by RUNX1, JAK2, and DNMT3A (36).

Co-mutations of ASXL1 with SF3B1 are less frequent (36) and have even been reported to be mutually exclusive by some authors (20, 28, 37). Reports about the clinical significance of ASXL1 and SF3B1 co-mutations are also few and contradictory. Previous studies were also confounded by the inclusion of patients with mutations in genes other than ASXL1 or SF3B1, which may have produced misleading results. The goal of this study was to compare patients with only ASXL1 or SF3B1 mutations or their co-mutation to exclude these confounding factors.

Materials and Methods

Selection of patients. This study was approved by the Institutional Review Board (MCC17964). All patients with next-generation sequencing (NGS) data up to August 2022 (8,285 patients) were searched per IRB protocols. Patients with CCUS, MDS, MPN, MDS/MPN, or AML and only ASXL1 mutation, only SF3B1 mutation, or only ASXL1/SF3B1 co-mutation were selected for this study. Two separate Board-certified hematopathologists reviewed the pathology reports and pathology slides to confirm the diagnoses. The diagnoses were rendered following the revised fifth edition of the WHO Classification of Hematopoietic Malignancies (2); CCUS was defined as patients with cytopenia and somatic mutations indicative of clonal hematopoiesis but not meeting the criteria of MDS. Cytogenetic results and fluorescence in-situ hybridization panel for MDS, including del(5q), del(7q), del(17p), del(20) and trisomy 8, were collected from our electronic database for analysis.

NGS and statistical analyses. As has been described in detail in in our previous studies (38, 39), in-house targeted NGS was performed using Illumina MiSeq or NexSeq500 instruments (Illumina, San Diego, CA, USA). The following most frequently mutated genes in myeloid neoplasms were tested in our in-house, 54-gene panel by NGS: ABL proto-oncogene 1 (ABL1), ASXL1, ATRX chromatin remodeler (ATRX), BCL6 co-repressor (BCOR), BCL6 corepressor-like 1 (BCORL1), B-Raf proto-oncogene (BRAF), calreticulin (CALR), Cbl proto-oncogene (CBL), CBLB,CBLC, cyclin-dependent kinase inhibitor 2A (CDKN2A), CEBPA, colony-stimulating factor 3 receptor (CSF3R), Cut-like homeobox 1 (CUX1), DNMT3A, ETS variant transcription factor 6 (ETV6), enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), F-box and WD repeat domain-containing 7 (FBXW7), FLT3, GATA1, GATA2, GNAS complex locus (GNAS), HRas proto-oncogene (HRAS), IDH1, IDH2, IKAROS family zinc finger 1 (IKZF1), JAK2, JAK3, lysine demethylase 6A (KDM6A), KIT proto-oncogene (KIT), lysine methyltransferase 2A (KMT2A), KRAS proto-oncogene (KRAS), MPL proto-oncogene (MPL), MYD88 innate immune signal transduction adaptor (MYD88), notch receptor 1 (NOTCH1), NPM1, NRAS, platelet-derived growth factor receptor alpha (PDGFRA), PHD finger protein 6 (PHF6), phosphatase and tensin homolog (PTEN), protein tyrosine phosphatase non-receptor type 11 (PTPN11), RAD21 cohesin complex component (RAD21), RUNX1, SETBP1, SF3B1, structural maintenance of chromosomes 1A (SMC1A), structural maintenance of chromosomes 3 (SMC3), SRSF2, STAG2, TET2, Tumor protein p53 (TP53), U2AF1, WT1 transcription factor (WT1), and zinc finger CCCH-type, RNA-binding motif and serine/arginine-rich 2 (ZRSR2). All the important regions of ASXL1 and SF3B1 genes were covered in the test. All variants with more than 1% minor allelic frequency in the general population were considered germline mutations and excluded.

The percentages of patients with specific diagnoses or cytogenetic abnormalities were compared by two-way Fisher’s exact test, the OS from the time of mutation detection to the time of last contact or death was compared by Kaplan-Meier survival analysis, while the medians of the ages and the duration of OS were compared two-way Mann-Whitney U-test. Statistical significance was defined as p<0.05.

Results

There were 8,285 patients diagnosed with or suspected to have a myeloid neoplasm and with NGS test results in our database; 1,515 patients had ASXL1 mutations, and 583 had SF3B1 mutations. Most of these patients with ASXL1 or SF3B1 mutations also had mutations of other genes. We also found 97 patients with concurrent ASXL1/SF3B1 mutations, also mostly with other additional genes mutated. We identified 89 patients with only ASXL1 mutations (ASXL1 group), 69 with mutations with only SF3B1 mutations (SF3B1 group), and 17 patients only with co-mutations of ASXL1 and SF3B1 (ASXL1/SF3B1 group) from these patients. The most frequent variants for ASXL1 and SF3B1 mutations were G646Wfs*12 and K554E, respectively, in all three groups.

The median age of the ASXL1 group at 69 years was much younger than that of SF3B1 and ASXL1/SF3B1 groups (76 and 75 years; p=0.012 and p<0.001, respectively). The female-to-male ratios were similar and not statistically significant among these groups (0.77, 0.53, and 0.70, respectively).

The distribution of the diagnoses of the patients in this study is shown in Table I. Patients with ASXL1 mutations more frequently had AML (22.47%) than did patients with SF3B1 mutations (1.45%, p<0.001), and had a trend for being more frequent than in those with ASXL1/SF3B1 mutations (11.76%, p=0.098), possibly because there were very few cases in the ASLX1–SF3B1 group. Similarly, patients with ASXL1 mutations more often had CCUS (33.71%) than did patients with ASXL1/SF3B1 (0%, p=0.002) or SF3B1 mutations (7.25%, p<0.001). However, patients with SF3B1 or ASXL1/SF3B1 mutations more frequently had MDS (75.36% and 64.71%, respectively) than did those with ASXL1 mutations (24.72%) (p<0.001 and p=0.004, respectively). Interestingly, patients with ASXL1/SF3B1 co-mutations (23.53%) were more often diagnosed with MDS/MPN, including MDS/MPN-RS-T and CMML than patients with ASXL1 mutations (5.62%, p=0.035) or SF3B1 mutations (15.94%, but not statistically significant). Finally, as to be expected, in MPN, mostly chronic myeloid leukemia and occasional essential thrombocythemia, only ASXL1 mutations were seen.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table I.

Comparison of the diagnoses of patients in this study by ASXL transcriptional regulator 1 (ASXL1) and splicing factor (SF3B1) mutation status.

The associations of ASXL1, and SF3B1 mutations with cytogenetic abnormalities are compared in Table II. Normal cytogenetics was the most frequent finding in all three groups of patients. The proportions of patients with normal cytogenetics were similar in the ASXL1, SF3B1, and ASXL1/SF3B1 groups (62.5%, 66.67%, 56.72%, respectively). Therefore, we can compare the OS of these three groups of patients with normal cytogenetics to avoid the confounding factor of cytogenetic abnormalities, which is known to have an impact on patient prognosis (40). Similarly to a previous report (41), patients with ASXL1 mutations significantly more frequently had myelodysplasia-related cytogenetic abnormalities, namely del(5q) (12.28%) and del(7/7q) (14.04%), than did patients with SF3B1 mutations (both 1.61%, p=0.027 and p=0.011, respectively). Patients with ASXL1 mutations also more frequently had del(5q) and del(7/7q) than did those with ASXL1/SF3B1 co-mutations (0% and 7.14%, respectively), although not statistically significant, likely because of too few specimens in the double-mutation group.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table II.

Comparison of the cytogenetics by ASXL transcriptional regulator 1 (ASXL1) and splicing factor 3b subunit 1(SF3B1) mutation status.

Finally, we compared the OS of the three groups of patients with normal karyotype by Kaplan-Meier survival analysis (Figure 1). Cytogenetic abnormalities are known to affect the prognosis of patients with myeloid neoplasms. Therefore, by only comparing the OS of the patients with normal cytogenetics, the interference of cytogenetic abnormalities is excluded. The ASXL1 group had worse OS than the SF3B1 group, with a hazard ratio of 5.83 (p=0.017). Interestingly, we found that the ASXL1/SF3B1 co-mutation group had poorer OS than both the single mutation groups, with a hazard ratio of 9.84 (p=0.005). In patients with MDS, the median OS of the ASXL1/SF3B1 group was also the shortest (4.7 months), followed by the ASXL1 group (7.6 months) and the SF3B1 group (15.5 months); however, these were not statistically significant, probably because of an insufficient number of patients in these groups.

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Comparison of the overall survival of patients with normal cytogenetics by ASXL transcriptional regulator 1 (ASXL1) and splicing factor (SF3B1) mutation status by Kaplan-Meier analysis.

Discussion

It has been reported that >80% of patients with MDS have at least one mutation in different pathways, which include DNA splicing (SF3B1, SRSF2), DNA methylation (DNMT3A, TET2), DNA repair (ATM, BRCC3), chromatin modification (ASXL1, EZH2), RNA transcription (TP53, RUNX1), RAS pathway (KRAS, NRAS), cohesin complex (STAG2, RAD21), and kinases (JAK2, FLT3). It is becoming more and more accepted that molecular abnormalities involving oncogenic genes might take precedence in prognosis of myeloid neoplasms and may be more important than morphological findings, such as the degree of dysplasia. ASXL1 and SF3B1 are among the most mutated genes in patients with myeloid neoplasms. Novel therapeutic strategies targeting ASXL1 mutations have been investigated (42, 43) and produced promising results. New agents targeting SF3B1 in MDS are also under investigation (44).

ASXL1 mutations occur in 10% to 31% of patients with MDS and especially in high-risk MDS (7, 8). ASXL1 mutations resulted in decreased OS and increased rate of relapse following allogeneic hematopoietic stem cell transplantation (1, 4, 5, 42, 45, 46). Patients with MDS without ASXL1 mutation exhibit improved survival and less frequent progression to AML (6, 31, 47-49). In MDS, a combination of 20q deletion, which is considered to have a favorable prognosis, with ASXL1 mutation conferred an inferior 2-year OS rate (50). ASXL1 mutations are the most frequently detected (40-50%) mutations in patients with CMML and portend poorer prognoses (15, 20, 46, 51, 52) and poor response to hypomethylating agents (31). ASXL1 mutations have also been reported in 5% to 11% of patients with AML (31, 34), more likely in older patients, male patients (19, 29, 34), and in those with secondary AML (29). In AML, ASXL1 mutations frequently co-occurred with mutations of RUNX1 (18, 29, 34) and IDH2 (29, 53), M0 karyotype of the French-American-British classification (34, 35), t(8; 21) (34, 54, 55), trisomy 8 (29, 34), and del(7q)/−7 chromosomal aberrations (29). Many studies have associated ASXL1 mutation with poor prognosis in patients with AML (10, 18, 21, 34, 56, 57).

Mutations in SF3B1 were detected in 7% to 53% of MDS cases (31) and in approximately 15% of patients with AML (58, 59). These mutations lead to superior prognoses (31, 45, 47, 60). SF3B1-mutated MDS is now referred to as a new subtype of the disease. It is defined by mutations, cytopenia, morphological dysplasia (with or without ring sideroblasts), bone marrow blasts <5%, peripheral blasts <1%, an indolent clinical course (25, 47), and less frequent progression to AML (26, 47, 60, 61). In MDS/MPN, JAK2 and SF3B1 mutations are predictors of better survival (36, 62). SF3B1-mutated CMML was also found to be a subtype with significant dysplastic features, lower ASXL1 mutation frequency, higher JAK2 V61F mutation frequency, and a more favorable AML-free survival (63).

The frequency of co-mutation of ASXL1 and SF3B1 is reported to be low (approximately 8%) (36) and even mutually exclusive by some authors [reviewed in (20)]. There are also very few and inconsistent reports about the clinical prognosis of ASXL1/SF3B1 co-mutations (20, 64, 65). All the previous studies also included patients with mutations of genes other than ASXL1 and SF3B1, which could significantly confound the analysis and skew the results. In this study, we selected patients with only ASXL1 or SF3B1, or ASXL1/SF3B1 co-mutations to avoid confounding factors from other genes.

From our database of 8,285 patients diagnosed with or suspected to have myeloid neoplasms and NGS results, we identified 89 patients with only ASXL1 mutations, 69 with only SF3B1 mutations, and 17 with ASXL1 and SF3B1 co-mutations.

Our study showed that patients with ASXL1 mutations more frequently had AML and CCUS than did those with SF3B1 mutations and ASXL1/SF3B1 co-mutations. On the contrary, patients with SF3B1 or ASXL1/SF3B1 mutations more frequently had MDS than did patients with ASXL1 mutations. Patients with ASXL1/SF3B1 mutations more frequently had MDS/MPN than did patients with ASXL1 or with SF3B1 mutations. As expected, only ASXL1 mutations were seen in patients with MPN, which is expected to lack myelodysplasia and, therefore, lack SF3B1 mutation.

Normal cytogenetics was the most frequent finding, similar among all three groups of patients. Consistent with a previous report (41), ASXL1 mutations were significantly more frequent than SF3B1 and ASXL1/SF3B1 co-mutations in patients with myelodysplasia-related cytogenetic abnormalities, such as del(5q) and del(7/7q).

Among patients with normal cytogenetics, those with ASXL1/SF3B1 double mutations showed the worst prognosis out of the three groups (Figure 1), likely because genes in both the epigenetic regulatory and RNA-splicing pathways are affected. In addition, the more genes that were mutated, the worse the prognosis, which has been shown by many previous studies (66-68). Janusz et al. reported that the presence of at least two mutations concomitant with that of SF3B1, including ASXL1, had an adverse impact on survival compared to SF3B1 mutation alone and fewer than two additional mutations (65). The co-mutation of SF3B1 with SRSF2, IDH2, BCOR, NUP98, and STAG2 were also linked to poor prognoses. Mangaonkar et al. also studied the effect of ASXL1 and SF3B1 co-mutation on the OS of patients with MDS with ring sideroblasts and found slightly different results (64). They reported that the median OS was highest in those with mutated SF3B1 without ASXL1 mutation, followed by mutation of both ASXL1 and SF3B1, then wild-type for both ASXL1 and SF3B1, and mutation of ASXL1 with wild-type SF3B1. However, their studies included patients with mutations of other genes. Their study also had fewer patients with ASXL1/SF3B1 co-mutation than our study. Further studies with more patients and with mutations of only these two genes are necessary to clarify the difference in our results.

In summary, our study suggests that concurrent ASXL1 and SF3B1 mutations confer worse OS than mutation of ASXL1 or SF3B1 alone. This might be due to disruption in both the epigenetic-regulatory pathway and the RNA-splicing pathway, or because two genes instead of one are mutated in these patients. However, larger cohort studies are necessary to confirm these results.

Acknowledgements

The Authors thank Janis De La Lglesia and Hebert Gerard for scientific editing.

Footnotes

  • Authors’ Contributions

    Jinming Song and Hailing Zhang designed the projects, collected, and analyzed the data, and wrote the article; Lynn Moscinski, Haipeng Shao, and Mohammad Hussaini made suggestions and edited the article; Ethan Yang participated in the data analysis and prepared the tables.

  • Conflicts of Interest

    There are no conflicts of interest to declare.

  • Received January 12, 2023.
  • Revision received March 4, 2023.
  • Accepted March 14, 2023.
  • Copyright © 2023, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

References

  1. ↵
    1. Gelsi-Boyer V,
    2. Brecqueville M,
    3. Devillier R,
    4. Murati A,
    5. Mozziconacci MJ and
    6. Birnbaum D
    : Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol 5: 12, 2012. PMID: 22436456. DOI: 10.1186/1756-8722-5-12
    OpenUrlCrossRefPubMed
  2. ↵
    1. Khoury JD,
    2. Solary E,
    3. Abla O,
    4. Akkari Y,
    5. Alaggio R,
    6. Apperley JF,
    7. Bejar R,
    8. Berti E,
    9. Busque L,
    10. Chan JKC,
    11. Chen W,
    12. Chen X,
    13. Chng WJ,
    14. Choi JK,
    15. Colmenero I,
    16. Coupland SE,
    17. Cross NCP,
    18. De Jong D,
    19. Elghetany MT,
    20. Takahashi E,
    21. Emile JF,
    22. Ferry J,
    23. Fogelstrand L,
    24. Fontenay M,
    25. Germing U,
    26. Gujral S,
    27. Haferlach T,
    28. Harrison C,
    29. Hodge JC,
    30. Hu S,
    31. Jansen JH,
    32. Kanagal-Shamanna R,
    33. Kantarjian HM,
    34. Kratz CP,
    35. Li XQ,
    36. Lim MS,
    37. Loeb K,
    38. Loghavi S,
    39. Marcogliese A,
    40. Meshinchi S,
    41. Michaels P,
    42. Naresh KN,
    43. Natkunam Y,
    44. Nejati R,
    45. Ott G,
    46. Padron E,
    47. Patel KP,
    48. Patkar N,
    49. Picarsic J,
    50. Platzbecker U,
    51. Roberts I,
    52. Schuh A,
    53. Sewell W,
    54. Siebert R,
    55. Tembhare P,
    56. Tyner J,
    57. Verstovsek S,
    58. Wang W,
    59. Wood B,
    60. Xiao W,
    61. Yeung C and
    62. Hochhaus A
    : The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia 36(7): 1703-1719, 2022. PMID: 35732831. DOI: 10.1038/s41375-022-01613-1
    OpenUrlCrossRefPubMed
  3. ↵
    1. Jaiswal S,
    2. Fontanillas P,
    3. Flannick J,
    4. Manning A,
    5. Grauman PV,
    6. Mar BG,
    7. Lindsley RC,
    8. Mermel CH,
    9. Burtt N,
    10. Chavez A,
    11. Higgins JM,
    12. Moltchanov V,
    13. Kuo FC,
    14. Kluk MJ,
    15. Henderson B,
    16. Kinnunen L,
    17. Koistinen HA,
    18. Ladenvall C,
    19. Getz G,
    20. Correa A,
    21. Banahan BF,
    22. Gabriel S,
    23. Kathiresan S,
    24. Stringham HM,
    25. McCarthy MI,
    26. Boehnke M,
    27. Tuomilehto J,
    28. Haiman C,
    29. Groop L,
    30. Atzmon G,
    31. Wilson JG,
    32. Neuberg D,
    33. Altshuler D and
    34. Ebert BL
    : Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26): 2488-2498, 2014. PMID: 25426837. DOI: 10.1056/NEJMoa1408617
    OpenUrlCrossRefPubMed
  4. ↵
    1. Steensma DP,
    2. Bejar R,
    3. Jaiswal S,
    4. Lindsley RC,
    5. Sekeres MA,
    6. Hasserjian RP and
    7. Ebert BL
    : Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126(1): 9-16, 2015. PMID: 25931582. DOI: 10.1182/blood-2015-03-631747
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Genovese G,
    2. Kähler AK,
    3. Handsaker RE,
    4. Lindberg J,
    5. Rose SA,
    6. Bakhoum SF,
    7. Chambert K,
    8. Mick E,
    9. Neale BM,
    10. Fromer M,
    11. Purcell SM,
    12. Svantesson O,
    13. Landén M,
    14. Höglund M,
    15. Lehmann S,
    16. Gabriel SB,
    17. Moran JL,
    18. Lander ES,
    19. Sullivan PF,
    20. Sklar P,
    21. Grönberg H,
    22. Hultman CM and
    23. McCarroll SA
    : Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26): 2477-2487, 2014. PMID: 25426838. DOI: 10.1056/NEJMoa1409405
    OpenUrlCrossRefPubMed
  6. ↵
    1. Thol F,
    2. Friesen I,
    3. Damm F,
    4. Yun H,
    5. Weissinger EM,
    6. Krauter J,
    7. Wagner K,
    8. Chaturvedi A,
    9. Sharma A,
    10. Wichmann M,
    11. Göhring G,
    12. Schumann C,
    13. Bug G,
    14. Ottmann O,
    15. Hofmann WK,
    16. Schlegelberger B,
    17. Heuser M and
    18. Ganser A
    : Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol 29(18): 2499-2506, 2011. PMID: 21576631. DOI: 10.1200/JCO.2010.33.4938
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Boultwood J,
    2. Perry J,
    3. Pellagatti A,
    4. Fernandez-Mercado M,
    5. Fernandez-Santamaria C,
    6. Calasanz MJ,
    7. Larrayoz MJ,
    8. Garcia-Delgado M,
    9. Giagounidis A,
    10. Malcovati L,
    11. Della Porta MG,
    12. Jädersten M,
    13. Killick S,
    14. Hellström-Lindberg E,
    15. Cazzola M and
    16. Wainscoat JS
    : Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24(5): 1062-1065, 2010. PMID: 20182461. DOI: 10.1038/leu.2010.20
    OpenUrlCrossRefPubMed
  8. ↵
    1. Rocquain J,
    2. Carbuccia N,
    3. Trouplin V,
    4. Raynaud S,
    5. Murati A,
    6. Nezri M,
    7. Tadrist Z,
    8. Olschwang S,
    9. Vey N,
    10. Birnbaum D,
    11. Gelsi-Boyer V and
    12. Mozziconacci MJ
    : Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer 10: 401, 2010. PMID: 20678218. DOI: 10.1186/1471-2407-10-401
    OpenUrlCrossRefPubMed
  9. ↵
    1. Carbuccia N,
    2. Murati A,
    3. Trouplin V,
    4. Brecqueville M,
    5. Adélaïde J,
    6. Rey J,
    7. Vainchenker W,
    8. Bernard OA,
    9. Chaffanet M,
    10. Vey N,
    11. Birnbaum D and
    12. Mozziconacci MJ
    : Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23(11): 2183-2186, 2009. PMID: 19609284. DOI: 10.1038/leu.2009.141
    OpenUrlCrossRefPubMed
  10. ↵
    1. Abdel-Wahab O,
    2. Manshouri T,
    3. Patel J,
    4. Harris K,
    5. Yao J,
    6. Hedvat C,
    7. Heguy A,
    8. Bueso-Ramos C,
    9. Kantarjian H,
    10. Levine RL and
    11. Verstovsek S
    : Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 70(2): 447-452, 2010. PMID: 20068184. DOI: 10.1158/0008-5472.CAN-09-3783
    OpenUrlAbstract/FREE Full Text
    1. Tefferi A
    : Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24(6): 1128-1138, 2010. PMID: 20428194. DOI: 10.1038/leu.2010.69
    OpenUrlCrossRefPubMed
    1. Stein BL,
    2. Williams DM,
    3. O’Keefe C,
    4. Rogers O,
    5. Ingersoll RG,
    6. Spivak JL,
    7. Verma A,
    8. Maciejewski JP,
    9. McDevitt MA and
    10. Moliterno AR
    : Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes. Haematologica 96(10): 1462-1469, 2011. PMID: 21712540. DOI: 10.3324/haematol.2011.045591
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Abdel-Wahab O,
    2. Pardanani A,
    3. Patel J,
    4. Wadleigh M,
    5. Lasho T,
    6. Heguy A,
    7. Beran M,
    8. Gilliland DG,
    9. Levine RL and
    10. Tefferi A
    : Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia 25(7): 1200-1202, 2011. PMID: 21455215. DOI: 10.1038/leu.2011.58
    OpenUrlCrossRefPubMed
  12. ↵
    1. Makishima H,
    2. Jankowska AM,
    3. McDevitt MA,
    4. O’Keefe C,
    5. Dujardin S,
    6. Cazzolli H,
    7. Przychodzen B,
    8. Prince C,
    9. Nicoll J,
    10. Siddaiah H,
    11. Shaik M,
    12. Szpurka H,
    13. Hsi E,
    14. Advani A,
    15. Paquette R and
    16. Maciejewski JP
    : CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood 117(21): e198-e206, 2011. PMID: 21346257. DOI: 10.1182/blood-2010-06-292433
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Itzykson R,
    2. Kosmider O,
    3. Renneville A,
    4. Gelsi-Boyer V,
    5. Meggendorfer M,
    6. Morabito M,
    7. Berthon C,
    8. Adès L,
    9. Fenaux P,
    10. Beyne-Rauzy O,
    11. Vey N,
    12. Braun T,
    13. Haferlach T,
    14. Dreyfus F,
    15. Cross NC,
    16. Preudhomme C,
    17. Bernard OA,
    18. Fontenay M,
    19. Vainchenker W,
    20. Schnittger S,
    21. Birnbaum D,
    22. Droin N and
    23. Solary E
    : Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol 31(19): 2428-2436, 2013. PMID: 23690417. DOI: 10.1200/JCO.2012.47.3314
    OpenUrlAbstract/FREE Full Text
    1. Gelsi-Boyer V,
    2. Trouplin V,
    3. Roquain J,
    4. Adélaïde J,
    5. Carbuccia N,
    6. Esterni B,
    7. Finetti P,
    8. Murati A,
    9. Arnoulet C,
    10. Zerazhi H,
    11. Fezoui H,
    12. Tadrist Z,
    13. Nezri M,
    14. Chaffanet M,
    15. Mozziconacci MJ,
    16. Vey N and
    17. Birnbaum D
    : ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol 151(4): 365-375, 2010. PMID: 20880116. DOI: 10.1111/j.1365-2141.2010.08381.x
    OpenUrlCrossRefPubMed
  14. ↵
    1. Patnaik MM,
    2. Padron E,
    3. LaBorde RR,
    4. Lasho TL,
    5. Finke CM,
    6. Hanson CA,
    7. Hodnefield JM,
    8. Knudson RA,
    9. Ketterling RP,
    10. Alkali A,
    11. Pardanani A,
    12. Ali NA,
    13. Komrokji RS and
    14. Tefferi A
    : Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia 27(7): 1504-1510, 2013. PMID: 23531518. DOI: 10.1038/leu.2013.88
    OpenUrlCrossRefPubMed
  15. ↵
    1. Schnittger S,
    2. Eder C,
    3. Jeromin S,
    4. Alpermann T,
    5. Fasan A,
    6. Grossmann V,
    7. Kohlmann A,
    8. Illig T,
    9. Klopp N,
    10. Wichmann HE,
    11. Kreuzer KA,
    12. Schmid C,
    13. Staib P,
    14. Peceny R,
    15. Schmitz N,
    16. Kern W,
    17. Haferlach C and
    18. Haferlach T
    : ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 27(1): 82-91, 2013. PMID: 23018865. DOI: 10.1038/leu.2012.262
    OpenUrlCrossRefPubMed
  16. ↵
    1. Metzeler KH,
    2. Becker H,
    3. Maharry K,
    4. Radmacher MD,
    5. Kohlschmidt J,
    6. Mrózek K,
    7. Nicolet D,
    8. Whitman SP,
    9. Wu YZ,
    10. Schwind S,
    11. Powell BL,
    12. Carter TH,
    13. Wetzler M,
    14. Moore JO,
    15. Kolitz JE,
    16. Baer MR,
    17. Carroll AJ,
    18. Larson RA,
    19. Caligiuri MA,
    20. Marcucci G and
    21. Bloomfield CD
    : ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood 118(26): 6920-6929, 2011. PMID: 22031865. DOI: 10.1182/blood-2011-08-368225
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Asada S,
    2. Fujino T,
    3. Goyama S and
    4. Kitamura T
    : The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 76(13): 2511-2523, 2019. PMID: 30927018. DOI: 10.1007/s00018-019-03084-7
    OpenUrlCrossRefPubMed
  18. ↵
    1. Jafari PA,
    2. Sadeghian MH,
    3. Miri HH,
    4. Sadeghi R,
    5. Bagheri R,
    6. Lavasani S and
    7. Souri S
    : Prognostic significance of SF3B1 mutations in patients with myelodysplastic syndromes: A meta-analysis. Crit Rev Oncol Hematol 145: 102832, 2020. PMID: 31812130. DOI: 10.1016/j.critrevonc.2019.102832
    OpenUrlCrossRefPubMed
  19. ↵
    1. Golas MM,
    2. Sander B,
    3. Will CL,
    4. Lührmann R and
    5. Stark H
    : Molecular architecture of the multiprotein splicing factor SF3b. Science 300(5621): 980-984, 2003. PMID: 12738865. DOI: 10.1126/science.1084155
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Malcovati L,
    2. Karimi M,
    3. Papaemmanuil E,
    4. Ambaglio I,
    5. Jädersten M,
    6. Jansson M,
    7. Elena C,
    8. Gallì A,
    9. Walldin G,
    10. Della Porta MG,
    11. Raaschou-Jensen K,
    12. Travaglino E,
    13. Kallenbach K,
    14. Pietra D,
    15. Ljungström V,
    16. Conte S,
    17. Boveri E,
    18. Invernizzi R,
    19. Rosenquist R,
    20. Campbell PJ,
    21. Cazzola M and
    22. Hellström Lindberg E
    : SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 126(2): 233-241, 2015. PMID: 25957392. DOI: 10.1182/blood-2015-03-633537
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Volpe VO,
    2. Al Ali N,
    3. Chan O,
    4. Padron E,
    5. Sallman DA,
    6. Kuykendall A,
    7. Sweet K,
    8. Lancet JE and
    9. Komrokji RS
    : Splicing factor 3B subunit 1 (SF3B1) mutation in the context of therapy-related myelodysplastic syndromes. Br J Haematol 198(4): 713-720, 2022. PMID: 35751140. DOI: 10.1111/bjh.18319
    OpenUrlCrossRefPubMed
  22. ↵
    1. Malcovati L,
    2. Stevenson K,
    3. Papaemmanuil E,
    4. Neuberg D,
    5. Bejar R,
    6. Boultwood J,
    7. Bowen DT,
    8. Campbell PJ,
    9. Ebert BL,
    10. Fenaux P,
    11. Haferlach T,
    12. Heuser M,
    13. Jansen JH,
    14. Komrokji RS,
    15. Maciejewski JP,
    16. Walter MJ,
    17. Fontenay M,
    18. Garcia-Manero G,
    19. Graubert TA,
    20. Karsan A,
    21. Meggendorfer M,
    22. Pellagatti A,
    23. Sallman DA,
    24. Savona MR,
    25. Sekeres MA,
    26. Steensma DP,
    27. Tauro S,
    28. Thol F,
    29. Vyas P,
    30. Van de Loosdrecht AA,
    31. Haase D,
    32. Tüchler H,
    33. Greenberg PL,
    34. Ogawa S,
    35. Hellstrom-Lindberg E and
    36. Cazzola M
    : SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood 136(2): 157-170, 2020. PMID: 32347921. DOI: 10.1182/blood.2020004850
    OpenUrlCrossRefPubMed
  23. ↵
    1. Malcovati L,
    2. Papaemmanuil E,
    3. Bowen DT,
    4. Boultwood J,
    5. Della Porta MG,
    6. Pascutto C,
    7. Travaglino E,
    8. Groves MJ,
    9. Godfrey AL,
    10. Ambaglio I,
    11. Gallì A,
    12. Da Vià MC,
    13. Conte S,
    14. Tauro S,
    15. Keenan N,
    16. Hyslop A,
    17. Hinton J,
    18. Mudie LJ,
    19. Wainscoat JS,
    20. Futreal PA,
    21. Stratton MR,
    22. Campbell PJ,
    23. Hellström-Lindberg E,
    24. Cazzola M and Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium and of the Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative
    : Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118(24): 6239-6246, 2011. PMID: 21998214. DOI: 10.1182/blood-2011-09-377275
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Kang MG,
    2. Kim HR,
    3. Seo BY,
    4. Lee JH,
    5. Choi SY,
    6. Kim SH,
    7. Shin JH,
    8. Suh SP,
    9. Ahn JS and
    10. Shin MG
    : The prognostic impact of mutations in spliceosomal genes for myelodysplastic syndrome patients without ring sideroblasts. BMC Cancer 15: 484, 2015. PMID: 26115659. DOI: 10.1186/s12885-015-1493-5
    OpenUrlCrossRefPubMed
  25. ↵
    1. Lin CC,
    2. Hou HA,
    3. Chou WC,
    4. Kuo YY,
    5. Wu SJ,
    6. Liu CY,
    7. Chen CY,
    8. Tseng MH,
    9. Huang CF,
    10. Lee FY,
    11. Liu MC,
    12. Liu CW,
    13. Tang JL,
    14. Yao M,
    15. Huang SY,
    16. Hsu SC,
    17. Ko BS,
    18. Tsay W,
    19. Chen YC and
    20. Tien HF
    : SF3B1 mutations in patients with myelodysplastic syndromes: the mutation is stable during disease evolution. Am J Hematol 89(8): E109-E115, 2014. PMID: 24723457. DOI: 10.1002/ajh.23734
    OpenUrlCrossRefPubMed
  26. ↵
    1. Paschka P,
    2. Schlenk RF,
    3. Gaidzik VI,
    4. Herzig JK,
    5. Aulitzky T,
    6. Bullinger L,
    7. Späth D,
    8. Teleanu V,
    9. Kündgen A,
    10. Köhne CH,
    11. Brossart P,
    12. Held G,
    13. Horst HA,
    14. Ringhoffer M,
    15. Götze K,
    16. Nachbaur D,
    17. Kindler T,
    18. Heuser M,
    19. Thol F,
    20. Ganser A,
    21. Döhner H and
    22. Döhner K
    : ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica 100(3): 324-330, 2015. PMID: 25596267. DOI: 10.3324/haematol.2014.114157
    OpenUrlAbstract/FREE Full Text
    1. Wu SJ,
    2. Kuo YY,
    3. Hou HA,
    4. Li LY,
    5. Tseng MH,
    6. Huang CF,
    7. Lee FY,
    8. Liu MC,
    9. Liu CW,
    10. Lin CT,
    11. Chen CY,
    12. Chou WC,
    13. Yao M,
    14. Huang SY,
    15. Ko BS,
    16. Tang JL,
    17. Tsay W and
    18. Tien HF
    : The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 120(15): 3106-3111, 2012. PMID: 22932795. DOI: 10.1182/blood-2012-02-412296
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Papaemmanuil E,
    2. Gerstung M,
    3. Malcovati L,
    4. Tauro S,
    5. Gundem G,
    6. Van Loo P,
    7. Yoon CJ,
    8. Ellis P,
    9. Wedge DC,
    10. Pellagatti A,
    11. Shlien A,
    12. Groves MJ,
    13. Forbes SA,
    14. Raine K,
    15. Hinton J,
    16. Mudie LJ,
    17. McLaren S,
    18. Hardy C,
    19. Latimer C,
    20. Della Porta MG,
    21. O’Meara S,
    22. Ambaglio I,
    23. Galli A,
    24. Butler AP,
    25. Walldin G,
    26. Teague JW,
    27. Quek L,
    28. Sternberg A,
    29. Gambacorti-Passerini C,
    30. Cross NC,
    31. Green AR,
    32. Boultwood J,
    33. Vyas P,
    34. Hellstrom-Lindberg E,
    35. Bowen D,
    36. Cazzola M,
    37. Stratton MR,
    38. Campbell PJ and Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium
    : Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122(22): 3616-27; quiz 3699, 2013. PMID: 24030381. DOI: 10.1182/blood-2013-08-518886
    OpenUrlAbstract/FREE Full Text
    1. Micol JB and
    2. Abdel-Wahab O
    : Collaborating constitutive and somatic genetic events in myeloid malignancies: ASXL1 mutations in patients with germline GATA2 mutations. Haematologica 99(2): 201-203, 2014. PMID: 24497555. DOI: 10.3324/haematol.2013.101303
    OpenUrlFREE Full Text
  28. ↵
    1. Makishima H
    : Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol 105(6): 732-742, 2017. PMID: 28447248. DOI: 10.1007/s12185-017-2241-1
    OpenUrlCrossRefPubMed
  29. ↵
    1. Chou WC,
    2. Huang HH,
    3. Hou HA,
    4. Chen CY,
    5. Tang JL,
    6. Yao M,
    7. Tsay W,
    8. Ko BS,
    9. Wu SJ,
    10. Huang SY,
    11. Hsu SC,
    12. Chen YC,
    13. Huang YN,
    14. Chang YC,
    15. Lee FY,
    16. Liu MC,
    17. Liu CW,
    18. Tseng MH,
    19. Huang CF and
    20. Tien HF
    : Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 116(20): 4086-4094, 2010. PMID: 20693432. DOI: 10.1182/blood-2010-05-283291
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Pratcorona M,
    2. Abbas S,
    3. Sanders MA,
    4. Koenders JE,
    5. Kavelaars FG,
    6. Erpelinck-Verschueren CA,
    7. Zeilemakers A,
    8. Löwenberg B and
    9. Valk PJ
    : Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica 97(3): 388-392, 2012. PMID: 22058207. DOI: 10.3324/haematol.2011.051532
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Adema V,
    2. Khouri J,
    3. Ni Y,
    4. Rogers HJ,
    5. Kerr CM,
    6. Awada H,
    7. Nagata Y,
    8. Kuzmanovic T,
    9. Advani AS,
    10. Gerds AT,
    11. Mukherjee S,
    12. Nazha A,
    13. Saunthararajah Y,
    14. Madanat Y,
    15. Patel BJ,
    16. Solé F,
    17. Nawrocki ST,
    18. Carew JS,
    19. Sekeres MA,
    20. Maciejewski JP,
    21. Visconte V and
    22. Carraway HE
    : Analysis of distinct SF3B1 hotspot mutations in relation to clinical phenotypes and response to therapy in myeloid neoplasia. Leuk Lymphoma 62(3): 735-738, 2021. PMID: 33140678. DOI: 10.1080/10428194.2020.1839647
    OpenUrlCrossRefPubMed
  32. ↵
    1. Carbuccia N,
    2. Trouplin V,
    3. Gelsi-Boyer V,
    4. Murati A,
    5. Rocquain J,
    6. Adélaïde J,
    7. Olschwang S,
    8. Xerri L,
    9. Vey N,
    10. Chaffanet M,
    11. Birnbaum D and
    12. Mozziconacci MJ
    : Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia 24(2): 469-473, 2010. PMID: 19865112. DOI: 10.1038/leu.2009.218
    OpenUrlCrossRefPubMed
  33. ↵
    1. Song J,
    2. Moscinski L,
    3. Zhang H,
    4. Zhang X and
    5. Hussaini M
    : Does SF3B1/TET2 double mutation portend better or worse prognosis than isolated SF3B1 or TET2 mutation? Cancer Genomics Proteomics 16(1): 91-98, 2019. PMID: 30587503. DOI: 10.21873/cgp.20115
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Song J,
    2. Hussaini M,
    3. Qin D,
    4. Zhang X,
    5. Shao H,
    6. Zhang L,
    7. Gajzer D,
    8. Basra P,
    9. Moscinski L and
    10. Zhang H
    : Comparison of SF3B1/DNMT3A comutations with DNMT3A or SF3B1 mutation alone in myelodysplastic syndrome and clonal cytopenia of undetermined significance. Am J Clin Pathol 154(1): 48-56, 2020. PMID: 32112088. DOI: 10.1093/ajcp/aqaa016
    OpenUrlCrossRefPubMed
  35. ↵
    1. Greenberg PL,
    2. Tuechler H,
    3. Schanz J,
    4. Sanz G,
    5. Garcia-Manero G,
    6. Solé F,
    7. Bennett JM,
    8. Bowen D,
    9. Fenaux P,
    10. Dreyfus F,
    11. Kantarjian H,
    12. Kuendgen A,
    13. Levis A,
    14. Malcovati L,
    15. Cazzola M,
    16. Cermak J,
    17. Fonatsch C,
    18. Le Beau MM,
    19. Slovak ML,
    20. Krieger O,
    21. Luebbert M,
    22. Maciejewski J,
    23. Magalhaes SM,
    24. Miyazaki Y,
    25. Pfeilstöcker M,
    26. Sekeres M,
    27. Sperr WR,
    28. Stauder R,
    29. Tauro S,
    30. Valent P,
    31. Vallespi T,
    32. van de Loosdrecht AA,
    33. Germing U and
    34. Haase D
    : Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120(12): 2454-2465, 2012. PMID: 22740453. DOI: 10.1182/blood-2012-03-420489
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Prats-Martín C,
    2. Burillo-Sanz S,
    3. Morales-Camacho RM,
    4. Pérez-López O,
    5. Suito M,
    6. Vargas MT,
    7. Caballero-Velázquez T,
    8. Carrillo-Cruz E,
    9. González J,
    10. Bernal R and
    11. Pérez-Simón JA
    : ASXL1 mutation as a surrogate marker in acute myeloid leukemia with myelodysplasia-related changes and normal karyotype. Cancer Med 9(11): 3637-3646, 2020. PMID: 32216059. DOI: 10.1002/cam4.2947
    OpenUrlCrossRefPubMed
  37. ↵
    1. Asada S,
    2. Goyama S,
    3. Inoue D,
    4. Shikata S,
    5. Takeda R,
    6. Fukushima T,
    7. Yonezawa T,
    8. Fujino T,
    9. Hayashi Y,
    10. Kawabata KC,
    11. Fukuyama T,
    12. Tanaka Y,
    13. Yokoyama A,
    14. Yamazaki S,
    15. Kozuka-Hata H,
    16. Oyama M,
    17. Kojima S,
    18. Kawazu M,
    19. Mano H and
    20. Kitamura T
    : Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun 9(1): 2733, 2018. PMID: 30013160. DOI: 10.1038/s41467-018-05085-9
    OpenUrlCrossRefPubMed
  38. ↵
    1. Yang H,
    2. Kurtenbach S,
    3. Guo Y,
    4. Lohse I,
    5. Durante MA,
    6. Li J,
    7. Li Z,
    8. Al-Ali H,
    9. Li L,
    10. Chen Z,
    11. Field MG,
    12. Zhang P,
    13. Chen S,
    14. Yamamoto S,
    15. Li Z,
    16. Zhou Y,
    17. Nimer SD,
    18. Harbour JW,
    19. Wahlestedt C,
    20. Xu M and
    21. Yang FC
    : Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 131(3): 328-341, 2018. PMID: 29113963. DOI: 10.1182/blood-2017-06-789669
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Malcovati L,
    2. Stevenson K,
    3. Papaemmanuil E,
    4. Neuberg D,
    5. Bejar R,
    6. Boultwood J,
    7. Bowen DT,
    8. Campbell PJ,
    9. Ebert BL,
    10. Fenaux P,
    11. Haferlach T,
    12. Heuser M,
    13. Jansen JH,
    14. Komrokji RS,
    15. Maciejewski JP,
    16. Walter MJ,
    17. Fontenay M,
    18. Garcia-Manero G,
    19. Graubert TA,
    20. Karsan A,
    21. Meggendorfer M,
    22. Pellagatti A,
    23. Sallman DA,
    24. Savona MR,
    25. Sekeres MA,
    26. Steensma DP,
    27. Tauro S,
    28. Thol F,
    29. Vyas P,
    30. Van de Loosdrecht AA,
    31. Haase D,
    32. Tüchler H,
    33. Greenberg PL,
    34. Ogawa S,
    35. Hellstrom-Lindberg E and
    36. Cazzola M
    : SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood 136(2): 157-170, 2020. PMID: 32347921. DOI: 10.1182/blood.2020004850
    OpenUrlCrossRefPubMed
  40. ↵
    1. Haferlach T,
    2. Nagata Y,
    3. Grossmann V,
    4. Okuno Y,
    5. Bacher U,
    6. Nagae G,
    7. Schnittger S,
    8. Sanada M,
    9. Kon A,
    10. Alpermann T,
    11. Yoshida K,
    12. Roller A,
    13. Nadarajah N,
    14. Shiraishi Y,
    15. Shiozawa Y,
    16. Chiba K,
    17. Tanaka H,
    18. Koeffler HP,
    19. Klein HU,
    20. Dugas M,
    21. Aburatani H,
    22. Kohlmann A,
    23. Miyano S,
    24. Haferlach C,
    25. Kern W and
    26. Ogawa S
    : Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28(2): 241-247, 2014. PMID: 24220272. DOI: 10.1038/leu.2013.336
    OpenUrlCrossRefPubMed
  41. ↵
    1. You X,
    2. Liu F,
    3. Binder M,
    4. Vedder A,
    5. Lasho T,
    6. Wen Z,
    7. Gao X,
    8. Flietner E,
    9. Rajagopalan A,
    10. Zhou Y,
    11. Finke C,
    12. Mangaonkar A,
    13. Liao R,
    14. Kong G,
    15. Ranheim EA,
    16. Droin N,
    17. Hunter AM,
    18. Nikolaev S,
    19. Balasis M,
    20. Abdel-Wahab O,
    21. Levine RL,
    22. Will B,
    23. Nadiminti KVG,
    24. Yang D,
    25. Geissler K,
    26. Solary E,
    27. Xu W,
    28. Padron E,
    29. Patnaik MM and
    30. Zhang J
    : Asxl1 loss cooperates with oncogenic Nras in mice to reprogram the immune microenvironment and drive leukemic transformation. Blood 139(7): 1066-1079, 2022. PMID: 34699595. DOI: 10.1182/blood.2021012519
    OpenUrlCrossRefPubMed
  42. ↵
    1. Cook MR,
    2. Karp JE and
    3. Lai C
    : The spectrum of genetic mutations in myelodysplastic syndrome: Should we update prognostication? EJHaem 3(1): 301-313, 2021. PMID: 35846202. DOI: 10.1002/jha2.317
    OpenUrlCrossRefPubMed
    1. Bejar R,
    2. Stevenson KE,
    3. Caughey BA,
    4. Abdel-Wahab O,
    5. Steensma DP,
    6. Galili N,
    7. Raza A,
    8. Kantarjian H,
    9. Levine RL,
    10. Neuberg D,
    11. Garcia-Manero G and
    12. Ebert BL
    : Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 30(27): 3376-3382, 2012. PMID: 22869879. DOI: 10.1200/JCO.2011.40.7379
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Nazha A,
    2. Sekeres MA,
    3. Bejar R,
    4. Rauh MJ,
    5. Othus M,
    6. Komrokji RS,
    7. Barnard J,
    8. Hilton CB,
    9. Kerr CM,
    10. Steensma DP,
    11. DeZern A,
    12. Roboz G,
    13. Garcia-Manero G,
    14. Erba H,
    15. Ebert BL and
    16. Maciejewski JP
    : Genomic biomarkers to predict resistance to hypomethylating agents in patients with myelodysplastic syndromes using artificial intelligence. JCO Precis Oncol 3: PO.19.00119, 2019. PMID: 31663066. DOI: 10.1200/po.19.00119
    OpenUrlCrossRefPubMed
  44. ↵
    1. Bacher U,
    2. Haferlach T,
    3. Schnittger S,
    4. Zenger M,
    5. Meggendorfer M,
    6. Jeromin S,
    7. Roller A,
    8. Grossmann V,
    9. Krauth MT,
    10. Alpermann T,
    11. Kern W and
    12. Haferlach C
    : Investigation of 305 patients with myelodysplastic syndromes and 20q deletion for associated cytogenetic and molecular genetic lesions and their prognostic impact. Br J Haematol 164(6): 822-833, 2014. PMID: 24372512. DOI: 10.1111/bjh.12710
    OpenUrlCrossRefPubMed
  45. ↵
    1. Sallman DA,
    2. Komrokji R,
    3. Cluzeau T,
    4. Vaupel C,
    5. Al Ali NH,
    6. Lancet J,
    7. Hall J,
    8. List A,
    9. Padron E and
    10. Song J
    : ASXL1 frameshift mutations drive inferior outcomes in CMML without negative impact in MDS. Blood Cancer J 7(12): 633, 2017. PMID: 29176559. DOI: 10.1038/s41408-017-0004-0
    OpenUrlCrossRefPubMed
  46. ↵
    1. Cui Y,
    2. Tong H,
    3. Du X,
    4. Li B,
    5. Gale RP,
    6. Qin T,
    7. Liu J,
    8. Xu Z,
    9. Zhang Y,
    10. Huang G,
    11. Jin J,
    12. Fang L,
    13. Zhang H,
    14. Pan L,
    15. Hu N,
    16. Qu S and
    17. Xiao Z
    : Impact of TET2, SRSF2, ASXL1 and SETBP1 mutations on survival of patients with chronic myelomonocytic leukemia. Exp Hematol Oncol 4: 14, 2015. PMID: 26019984. DOI: 10.1186/s40164-015-0009-y
    OpenUrlCrossRefPubMed
  47. ↵
    1. Molenaar RJ,
    2. Thota S,
    3. Nagata Y,
    4. Patel B,
    5. Clemente M,
    6. Przychodzen B,
    7. Hirsh C,
    8. Viny AD,
    9. Hosano N,
    10. Bleeker FE,
    11. Meggendorfer M,
    12. Alpermann T,
    13. Shiraishi Y,
    14. Chiba K,
    15. Tanaka H,
    16. van Noorden CJ,
    17. Radivoyevitch T,
    18. Carraway HE,
    19. Makishima H,
    20. Miyano S,
    21. Sekeres MA,
    22. Ogawa S,
    23. Haferlach T and
    24. Maciejewski JP
    : Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia 29(11): 2134-2142, 2015. PMID: 25836588. DOI: 10.1038/leu.2015.91
    OpenUrlCrossRefPubMed
  48. ↵
    1. Micol JB,
    2. Duployez N,
    3. Boissel N,
    4. Petit A,
    5. Geffroy S,
    6. Nibourel O,
    7. Lacombe C,
    8. Lapillonne H,
    9. Etancelin P,
    10. Figeac M,
    11. Renneville A,
    12. Castaigne S,
    13. Leverger G,
    14. Ifrah N,
    15. Dombret H,
    16. Preudhomme C,
    17. Abdel-Wahab O and
    18. Jourdan E
    : Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124(9): 1445-1449, 2014. PMID: 24973361. DOI: 10.1182/blood-2014-04-571018
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Krauth MT,
    2. Eder C,
    3. Alpermann T,
    4. Bacher U,
    5. Nadarajah N,
    6. Kern W,
    7. Haferlach C,
    8. Haferlach T and
    9. Schnittger S
    : High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia 28(7): 1449-1458, 2014. PMID: 24402164. DOI: 10.1038/leu.2014.4
    OpenUrlCrossRefPubMed
  50. ↵
    1. Papaemmanuil E,
    2. Gerstung M,
    3. Bullinger L,
    4. Gaidzik VI,
    5. Paschka P,
    6. Roberts ND,
    7. Potter NE,
    8. Heuser M,
    9. Thol F,
    10. Bolli N,
    11. Gundem G,
    12. Van Loo P,
    13. Martincorena I,
    14. Ganly P,
    15. Mudie L,
    16. McLaren S,
    17. O’Meara S,
    18. Raine K,
    19. Jones DR,
    20. Teague JW,
    21. Butler AP,
    22. Greaves MF,
    23. Ganser A,
    24. Döhner K,
    25. Schlenk RF,
    26. Döhner H and
    27. Campbell PJ
    : Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23): 2209-2221, 2016. PMID: 27276561. DOI: 10.1056/NEJMoa1516192
    OpenUrlCrossRefPubMed
  51. ↵
    1. Tsai CH,
    2. Hou HA,
    3. Tang JL,
    4. Liu CY,
    5. Lin CC,
    6. Chou WC,
    7. Tseng MH,
    8. Chiang YC,
    9. Kuo YY,
    10. Liu MC,
    11. Liu CW,
    12. Lin LI,
    13. Tsay W,
    14. Yao M,
    15. Li CC,
    16. Huang SY,
    17. Ko BS,
    18. Hsu SC,
    19. Chen CY,
    20. Lin CT,
    21. Wu SJ and
    22. Tien HF
    : Genetic alterations and their clinical implications in older patients with acute myeloid leukemia. Leukemia 30(7): 1485-1492, 2016. PMID: 27055875. DOI: 10.1038/leu.2016.65
    OpenUrlCrossRefPubMed
  52. ↵
    1. van der Werf I,
    2. Wojtuszkiewicz A,
    3. Yao H,
    4. Sciarrillo R,
    5. Meggendorfer M,
    6. Hutter S,
    7. Walter W,
    8. Janssen J,
    9. Kern W,
    10. Haferlach C,
    11. Haferlach T,
    12. Jansen G,
    13. Kaspers GJL,
    14. Groen R,
    15. Ossenkoppele G and
    16. Cloos J
    : SF3B1 as therapeutic target in FLT3/ITD positive acute myeloid leukemia. Leukemia 35(9): 2698-2702, 2021. PMID: 34002025. DOI: 10.1038/s41375-021-01273-7
    OpenUrlCrossRefPubMed
  53. ↵
    1. Adamia S,
    2. Haibe-Kains B,
    3. Pilarski PM,
    4. Bar-Natan M,
    5. Pevzner S,
    6. Avet-Loiseau H,
    7. Lode L,
    8. Verselis S,
    9. Fox EA,
    10. Burke J,
    11. Galinsky I,
    12. Dagogo-Jack I,
    13. Wadleigh M,
    14. Steensma DP,
    15. Motyckova G,
    16. Deangelo DJ,
    17. Quackenbush J,
    18. Stone R and
    19. Griffin JD
    : A genome-wide aberrant RNA splicing in patients with acute myeloid leukemia identifies novel potential disease markers and therapeutic targets. Clin Cancer Res 20(5): 1135-1145, 2014. PMID: 24284058. DOI: 10.1158/1078-0432.CCR-13-0956
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Nazha A,
    2. Komrokji R,
    3. Meggendorfer M,
    4. Jia X,
    5. Radakovich N,
    6. Shreve J,
    7. Hilton CB,
    8. Nagata Y,
    9. Hamilton BK,
    10. Mukherjee S,
    11. Al Ali N,
    12. Walter W,
    13. Hutter S,
    14. Padron E,
    15. Sallman D,
    16. Kuzmanovic T,
    17. Kerr C,
    18. Adema V,
    19. Steensma DP,
    20. Dezern A,
    21. Roboz G,
    22. Garcia-Manero G,
    23. Erba H,
    24. Haferlach C,
    25. Maciejewski JP,
    26. Haferlach T and
    27. Sekeres MA
    : Personalized prediction model to risk stratify patients with myelodysplastic syndromes. J Clin Oncol 39(33): 3737-3746, 2021. PMID: 34406850. DOI: 10.1200/JCO.20.02810
    OpenUrlCrossRefPubMed
  55. ↵
    1. Papaemmanuil E,
    2. Cazzola M,
    3. Boultwood J,
    4. Malcovati L,
    5. Vyas P,
    6. Bowen D,
    7. Pellagatti A,
    8. Wainscoat JS,
    9. Hellstrom-Lindberg E,
    10. Gambacorti-Passerini C,
    11. Godfrey AL,
    12. Rapado I,
    13. Cvejic A,
    14. Rance R,
    15. McGee C,
    16. Ellis P,
    17. Mudie LJ,
    18. Stephens PJ,
    19. McLaren S,
    20. Massie CE,
    21. Tarpey PS,
    22. Varela I,
    23. Nik-Zainal S,
    24. Davies HR,
    25. Shlien A,
    26. Jones D,
    27. Raine K,
    28. Hinton J,
    29. Butler AP,
    30. Teague JW,
    31. Baxter EJ,
    32. Score J,
    33. Galli A,
    34. Della Porta MG,
    35. Travaglino E,
    36. Groves M,
    37. Tauro S,
    38. Munshi NC,
    39. Anderson KC,
    40. El-Naggar A,
    41. Fischer A,
    42. Mustonen V,
    43. Warren AJ,
    44. Cross NC,
    45. Green AR,
    46. Futreal PA,
    47. Stratton MR,
    48. Campbell PJ and Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium
    : Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365(15): 1384-1395, 2011. PMID: 21995386. DOI: 10.1056/NEJMoa1103283
    OpenUrlCrossRefPubMed
  56. ↵
    1. Broséus J,
    2. Alpermann T,
    3. Wulfert M,
    4. Florensa Brichs L,
    5. Jeromin S,
    6. Lippert E,
    7. Rozman M,
    8. Lifermann F,
    9. Grossmann V,
    10. Haferlach T,
    11. Germing U,
    12. Luño E,
    13. Girodon F,
    14. Schnittger S and MPN and MPNr-EuroNet (COST Action BM0902)
    : Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia 27(9): 1826-1831, 2013. PMID: 23594705. DOI: 10.1038/leu.2013.120
    OpenUrlCrossRefPubMed
  57. ↵
    1. Wudhikarn K,
    2. Loghavi S,
    3. Mangaonkar AA,
    4. Al-Kali A,
    5. Binder M,
    6. Carr R,
    7. Reichard K,
    8. Finke C,
    9. Howard M,
    10. Gangat N,
    11. Tefferi A,
    12. Komrokji R,
    13. Ali N,
    14. Lasho T,
    15. Ketterling R,
    16. Padron E and
    17. Patnaik MM
    : SF3B1-mutant CMML defines a predominantly dysplastic CMML subtype with a superior acute leukemia-free survival. Blood Adv 4(22): 5716-5721, 2020. PMID: 33216886. DOI: 10.1182/bloodadvances.2020003345
    OpenUrlCrossRefPubMed
  58. ↵
    1. Mangaonkar AA,
    2. Lasho TL,
    3. Finke CM,
    4. Gangat N,
    5. Al-Kali A,
    6. Elliott MA,
    7. Begna KH,
    8. Alkhateeb H,
    9. Wolanskyj-Spinner AP,
    10. Hanson CA,
    11. Ketterling RP,
    12. Hogan WJ,
    13. Pardanani A,
    14. Litzow MR,
    15. Tefferi A and
    16. Patnaik MM
    : Prognostic interaction between bone marrow morphology and SF3B1 and ASXL1 mutations in myelodysplastic syndromes with ring sideroblasts. Blood Cancer J 8(2): 18, 2018. PMID: 29434284. DOI: 10.1038/s41408-018-0051-1
    OpenUrlCrossRefPubMed
  59. ↵
    1. Janusz K,
    2. Izquierdo MM,
    3. Cadenas FL,
    4. Ramos F,
    5. Sánchez JMH,
    6. Lumbreras E,
    7. Robledo C,
    8. Del Real JS,
    9. Caballero JC,
    10. Collado R,
    11. Bernal T,
    12. Pedro C,
    13. Insunza A,
    14. de Paz R,
    15. Xicoy B,
    16. Salido E,
    17. García JS,
    18. Mínguez SS,
    19. García CM,
    20. Muñoz AMS,
    21. Barba MS,
    22. Rivas JMH,
    23. Abáigar M and
    24. Campelo MD
    : Clinical, biological, and prognostic implications of SF3B1 co-occurrence mutations in very low/low- and intermediate-risk MDS patients. Ann Hematol 100(8): 1995-2004, 2021. PMID: 33409621. DOI: 10.1007/s00277-020-04360-4
    OpenUrlCrossRefPubMed
  60. ↵
    1. Crisà E,
    2. Kulasekararaj AG,
    3. Adema V,
    4. Such E,
    5. Schanz J,
    6. Haase D,
    7. Shirneshan K,
    8. Best S,
    9. Mian SA,
    10. Kizilors A,
    11. Cervera J,
    12. Lea N,
    13. Ferrero D,
    14. Germing U,
    15. Hildebrandt B,
    16. Martínez ABV,
    17. Santini V,
    18. Sanz GF,
    19. Solé F and
    20. Mufti GJ
    : Impact of somatic mutations in myelodysplastic patients with isolated partial or total loss of chromosome 7. Leukemia 34(9): 2441-2450, 2020. PMID: 32066866. DOI: 10.1038/s41375-020-0728-x
    OpenUrlCrossRefPubMed
    1. Jiang L,
    2. Luo Y,
    3. Zhu S,
    4. Wang L,
    5. Ma L,
    6. Zhang H,
    7. Shen C,
    8. Yang W,
    9. Ren Y,
    10. Zhou X,
    11. Mei C,
    12. Ye L,
    13. Xu W,
    14. Yang H,
    15. Lu C,
    16. Jin J and
    17. Tong H
    : Mutation status and burden can improve prognostic prediction of patients with lower-risk myelodysplastic syndromes. Cancer Sci 111(2): 580-591, 2020. PMID: 31804030. DOI: 10.1111/cas.14270
    OpenUrlCrossRefPubMed
  61. ↵
    1. Guglielmelli P,
    2. Lasho TL,
    3. Rotunno G,
    4. Score J,
    5. Mannarelli C,
    6. Pancrazzi A,
    7. Biamonte F,
    8. Pardanani A,
    9. Zoi K,
    10. Reiter A,
    11. Duncombe A,
    12. Fanelli T,
    13. Pietra D,
    14. Rumi E,
    15. Finke C,
    16. Gangat N,
    17. Ketterling RP,
    18. Knudson RA,
    19. Hanson CA,
    20. Bosi A,
    21. Pereira A,
    22. Manfredini R,
    23. Cervantes F,
    24. Barosi G,
    25. Cazzola M,
    26. Cross NC,
    27. Vannucchi AM and
    28. Tefferi A
    : The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 28(9): 1804-1810, 2014. PMID: 24549259. DOI: 10.1038/leu.2014.76
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

In Vivo: 37 (3)
In Vivo
Vol. 37, Issue 3
May-June 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on In Vivo.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Co-mutation of ASXL1 and SF3B1 Predicts Poorer Overall Survival Than Isolated ASXL1 or SF3B1 Mutations
(Your Name) has sent you a message from In Vivo
(Your Name) thought you would like to see the In Vivo web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Co-mutation of ASXL1 and SF3B1 Predicts Poorer Overall Survival Than Isolated ASXL1 or SF3B1 Mutations
JINMING SONG, LYNN MOSCINSKI, ETHAN YANG, HAIPENG SHAO, MOHAMMAD HUSSAINI, HAILING ZHANG
In Vivo May 2023, 37 (3) 985-993; DOI: 10.21873/invivo.13172

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Co-mutation of ASXL1 and SF3B1 Predicts Poorer Overall Survival Than Isolated ASXL1 or SF3B1 Mutations
JINMING SONG, LYNN MOSCINSKI, ETHAN YANG, HAIPENG SHAO, MOHAMMAD HUSSAINI, HAILING ZHANG
In Vivo May 2023, 37 (3) 985-993; DOI: 10.21873/invivo.13172
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Enhancement of Wound Healing Efficacy by Chitosan-based Hydrocolloid on Sprague Dawley Rats
  • Expression of ALCAM in Clinical Colon Cancer and Relationship With Patients’ Treatment Responses
  • A Pilot Study of the Association VDR Polymorphisms With Primary Hyperparathyroidism
Show more Experimental Studies

Similar Articles

Keywords

  • ASXL1
  • SF3B1
  • mutations
  • myeloid
  • myelodysplastic syndrome
  • acute myeloid leukemia
  • myeloproliferative neoplasm
In Vivo

© 2023 In Vivo

Powered by HighWire