
Abstract. Background/Aim: Renal cell carcinoma is one of
the three most common malignant urologic tumors, with clear
cell renal cell carcinoma (ccRCC) representing its most
common subtype. Although nephrectomy can radically cure
the disease, a large percentage of patients is diagnosed when
metastatic sites are present and thus alternative,
pharmaceutical approaches need to be sought. Since HIF1 up-
regulates the transcription of genes that range from metabolic
enzymes to non-coding RNAs, and is a key molecule of ccRCC
pathogenesis, this study aimed to investigate the expression
ALDOA, SOX-6, and non-coding RNAs (mir-122, mir-1271,
and MALAT-1) in samples from ccRCC patients. Patients and
Methods: Tumor and adjacent normal tissue samples from 14
patients with ccRCC were harvested. Expression of ALDOA,
mir-122, mir-1271, and MALAT-1 mRNA was estimated using
real time PCR, whereas the expression of SOX-6 protein was
investigated using immunohistochemistry. Results: Up-
regulation of HIF1 was observed, accompanied with up-
regulation of ALDOA, MALAT-1, and mir-122. On the
contrary, the expression of mir-1271 was found to be reduced,
a finding that can be attributed to a potential MALAT-1
sponge function. Furthermore, SOX-6 protein levels (a
transcription factor with tumor suppressing properties) were
also reduced. Conclusion: The observed dysregulated
expression levels highlight the importance of ALDOA,

MALAT-1, mir-122, mir-1271, and SOX-6, which remain less
studied than the known and well-studied HIF1 pathways of
VEGF, TGF-α, and EPO. Furthermore, inhibition of the up-
regulated ALDOA, mir-122, and MALAT-1 could be of
therapeutic interest for selected ccRCC patients.

Renal cell carcinoma is one of the three major urologic
cancers with a steadily increasing incidence over the past
decades, affecting more than 400,000 individuals annually at
a global scale. Clear cell renal cell carcinoma (ccRCC)
represents the most common subtype of renal malignancies
and is characterized by a poor prognosis (1). Even though
ccRCC can be treated surgically, most ccRCC cases are
diagnosed when metastasis is already present with a median
survival no greater than 13 months (2).

A key molecule in the development of ccRCC (3) and of
several other malignancies is hypoxia inducible factor 1
(HIF1) whose expression is often dysregulated (4, 5). HIF1
is involved in a plethora of cellular pathways and better
understanding of these networks could be translated into
inhibitors that would be of use as treatment for patients that
either have metastases or that are not eligible for surgery.

One of HIF1 targets, Aldolase A (fructose-bisphosphate
aldolase a, ALDOA), is a ubiquitous glycolytic enzyme that
drives the glycolytic metabolic pathway in mammalian cells
(6) and is responsible for catalyzing the reversible
conversion of fructose-1,6-bisphosphate to glyceraldehyde-
3-phosphate and dihydroxyacetone phosphate (7). The
hypoxic tumor environment boosts glycolytic enzymes via
HIF1 and increased expression of ALDOA is reported in
malignancies, implying enhanced glycolysis in cancer cells,
and thereby is considered to act as an oncogene (8, 9).
Elevated levels of ALDOA expression predict poor survival
in patients with ccRCC (10) and are related with metastasis
and invasion of renal tumors (11). 

A second, important target, is MALAT-1 (also known as
NEAT1) (12), a long noncoding RNA (lncRNA) that is well
known for its role in malignancies. Although initially used
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as a prognostic biomarker for the prognosis and presence of
metastatic sites in patients with non-small cell lung
carcinoma, its role has well expanded beyond that. Although
the exact mechanism of MALAT-1 action remains unknown,
it is widely accepted that increased levels of MALAT-1 are
linked to tumor cell proliferation and metastatic potential
(13). Furthermore, it has been shown that MALAT-1 binds
to mir-1271 and act as a molecular sponge [a term that refers
to the binding of a lncRNA to a miRNA to inhibit its
function (14). This is an important step during tumorigenesis
since mir-1271 inhibits epithelial to mesenchymal transition
as well as tumor invasion (15).

Another significant target of HIF1 is mir-122, which has
been shown to play a role in promoting tumorigenesis. This
can occur via several mechanisms including the PI3K/Akt
pathway (16) and by targeting occludin (17).

Finally, SOX-6 has been reported (18, 19) to be a gene target
of both mir-122 and mir-1271. Thus, this protein represents an
indirect target of HIF1 (via mir-122 and mir-1271) with an
important biological function due to its tumor suppressive
properties. Indeed, research has shown that SOX-6, is essential
for several developmental processes and is involved in the
carcinogenesis of various malignancies. Current literature
suggests its role in cellular differentiation, while reduced
expression of SOX-6 has been linked to a plethora of
malignancies including liver and colorectal cancer (20).

Taken together, the aforementioned molecules (ALDOA,
mir-122, MALAT-1, mir-1271, and SOX-6) could comprise a
pathway that mediates crucial cellular events during
oncogenesis. Thus, the aim of this study was to investigate
the expression changes of the involved genes, which will
contribute to the better understanding of the mechanisms
through which HIF1 plays a role in ccRCC. Furthermore, the
knowledge of these axes could be translated into novel
pharmaceutical agents for the effective treatment of ccRCC
patients.

Patients and Methods

Patients and specimens. Renal cancer samples were collected from
patients (n=14) who underwent radical or partial nephrectomy. The

surgical operations were performed at the Laiko General Hospital of
Athens over the past two years (2021-2022). The extracted kidney
tissue specimens were collected and then transferred at the Laboratory
of Biology (Medical School, National and Kapodistrian University of
Athens) and stored at –80˚C. Normal adjacent tissue was also
collected and used as control. The diagnosis was confirmed
histologically. Fuhrman grading and TNM classification systems were
used for histological classification (21). All subjects involved in this
study gave their informed consent prior to participating and the
present study was approved by the Ethics Committee of the Hospital.

RNA extraction and cDNA synthesis. Τotal RNA was extracted from
cancer and adjacent normal tissues of the patients using NucleoZOL
(Macherey-Nagel, Düren, Germany). The TAKARA kit (Takara Bio
Europe SAS, Saint-Germain-en-Laye France) was used for cDNA
synthesis from total RNA. All reactions were held on Thermal
Cycler (Kyratec, SuperCycler, Queensland, Australia). The reaction
conditions were as follows: 37˚C for 30 min and 85˚C for 5 min to
deactivate reverse transcriptase.

Real-time PCR and gene expression analysis. To perform real time
PCR, the KAPA SYBR FAST qPCR mix (KAPA BIOSYSTEMS,
Cape Town, South Africa) was used. GAPDH and U6 were used as
genes of reference. The sequences of HIF1, ALDOA, MALAT-1,
GAPDH, miR-1271, mir-122, and U6sn primers are illustrated in
Table I. All reactions were held in duplicate to ensure
reproducibility and gene expression was normalized to the
expression of housekeeping genes. The reactions were held at
SaCycler-96 (Sacace Biotechnologies, Como, Italy). GAPDH
(HIF1, ALDOA, MALAT-1) and U6sn (mir-122 and mir-1271) were
used for within sample normalization. Fold change was calculated
as 2–ΔΔCt and is presented as fold regulation. Down-regulated genes
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Table I. Primer sequences.

Gene Forward primer Reverse primer 

ALDOA 5’ATGCCCTACCAATATCCAGC3’ 5’GACAGCCCATCCAACCCT3’
HIF-1 5’CATAAAGTCTGCAACATGGAAGGT3’ 5’ATTTGATGGGTGAGGAATGGGTT3’
MALAT-1 5’GAATTGCGTCATTTAAAGCCTAGTT3’ 5’GTTTCATCCTACCACTCCCAATTAAT3’
GAPDH 5’CATCTCTGCCCCCTCTGCTG3’ 5’GCCTGCTTCACCACCTTCTTG3’
Mir-122 5’ACACTCCAGCTGGGTGGAGTGTGACAA3’ 5’ TGGTGTCGTGGAGTCG 3’
Mir-1271 5’ CTAGACGTCCAGATTGAATAGAC3’ 5’GTCCGAGCTTGGTCAGAATG3’
snU6 5’ATTGCAACGATACAGAGAAGATT3’ 5’GGAACGCTTCACGAATTTG 3’

Table II. Patient demographics and TNM/Fuhrman grading.

Variables

Sex Male Female 
6/14 8/14

Age 64.5±10.95 62.2±9.657
TNM staging III IV

9 5
Fuhrman Grade 1 2 3

3/14 4/14 7/14



are shown as the negative inverse of fold change and up-regulated
as the fold change, as previously described (22).

Immunohistochemistry and investigation of SOX-6 expression.
Briefly, sections from kidney samples (ccRCC and adjacent tissue)
were fixed with 10% neutral buffered formalin solution for 24 h at
room temperature and then dehydrated in a graduated ethanol series
and embedded in paraffin. Then, sections were deparaffinized in
xylol at 60˚C for 20 min and then hydrated in successive ethanol
washes. Next, antigen retrieval was performed by incubating in
citric acid for 15 min and then sections were washed 3 times with
TBS. Kidney sections were incubated with 5% BSA-TBS for 1 h to
reduce non-specific binding of the Fc part of primary/secondary
antibodies. After being blocked, sections were incubated with the
primary antibody anti-SOX-6 (ab30455, Abcam, Cambridge, UK)
at a dilution 1:500 overnight at 4˚C. The following day, slides were
washed in TBS and incubated with HRP-polymer (secondary
antibody; DAKO, Glostrup, Denmark) for 15 min. Finally, and after
TBS washes, 100 μl of DAB substrate was added for 1 min and then
hematoxylin for 1 min. 

Expression of SOX-6 protein was scored by two independent
blinded observers using a classification system of three categories (23)
that consists of 1+ (less than 10% positive cells), 2+ (positive cells
between 10% and 50%) and 3+ (for more than 50% of cells positive). 

Statistical analysis. All statistical analyses were performed using
GraphPad version 3.00 (GraphPad Software, San Diego, Ca, USA).
For comparison of gene expression between ccRCC and adjacent
normal tissue p-values were calculated based on a Student t-test of
the replicate 2–ΔCt values for each gene between the two groups.
p<0.05 was considered significant.

Results

The demographic and histological scoring are shown in
Table II. The median age of patients was 64.5±10.95 years. 

Altered gene expression is observed in ccRCC tissues. To
test the hypothesis that HIF1 expression can be related to
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Figure 1. Differentially expressed genes (HIF1, ALDOA, mir-1271, mir-
122, and MALAT-1) between ccRCC and normal adjacent tissues. Data
are shown as boxplots with the y axis representing 1/dCt values. Median
1/dCt values for each group are presented with a horizontal line. *, ***
statistical significance at p<0.05 and p<0.001, respectively.



the expression of ALDOA, MALAT-1, mir-122, and mir-
1271, we investigated their expression in ccRCC samples
and their adjacent tissues. The expression of HIF1 was
found to be up-regulated (1.4-fold change, p<0.001).
Subsequently we investigated the fold change in the
expression of ALDOA, MALAT-1, mir-122, and mir-1271.
ALDOA, mir-122, and MALAT-1 were found to be up-

regulated. Compared to the adjacent tissues, their expression
was up-regulated by 2.7-fold (p<0.001), 1.9-fold (p<0.05),
and 1.7-fold (p<0.05), respectively. 

On the contrary, the mRNA of mir-1271 showed a
decrease (-3.6-fold change, p<0.05), compared to adjacent
tissue. The results are shown in Figure 1. A possible
correlation between TNM stage or Fuhrman score and gene
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Figure 2. SOX-6 expression was assayed using immunohistochemical staining in representative examples of ccRCC and normal tissue. Panels A-D
refer to ccRCC tissue samples and panels E-H to normal tissue (with the primary antibody anti-SOX-6 (ab30455, Abcam). Panels I-L show the
background noise (incubation only with HRP polymer) in ccRCC (I, J) and normal (K, L) tissue.



expression changes was investigated. However, the number
of samples per stage was not adequate to reach any
statistically significant conclusions. 

SOX-6 protein levels are reduced in ccRCC samples.
Additionally, we studied the expression of SOX-6 protein.
As illustrated in Figure 2, ccRCC tissue samples showed
decreased expression (panels A-D) when compared to
adjacent tissue (panels E-H). Of the 14 ccRCC tissue
samples, approximately 90% were classified as 1+ and 10%
as 2+. On the contrary, the adjacent tissues showed higher
protein expression levels; approximately 60% were classified
as 2+ and 40% as 3+. Regarding the site of SOX-6
expression, it was mainly observed in the cytoplasm and
secondarily in the nuclei of the cells.

Discussion

It is well known that HIF1 is a key molecule in glycolysis
and cancer, allowing malignant cells to boost anaerobic
metabolism when the available oxygen is limited (24). Based
on our results, HIF1 was found to be up-regulated. This
finding agrees with current literature; not only HIF1 has
been repeatedly found to be up-regulated in malignancies but
it also indicates a poor prognosis (25). Its cancer-promoting
actions affect several targets including glycolytic enzymes
(ALDOA) and non-coding RNAs (including mir-122 and
MALAT-1) (26-28). However, unlike the well characterized

VEGF, TGF-α, and EPO pathways (29), the connection
between HIF1 expression and mir-122, MALAT-1, and
ALDOA remains poorly studied. 

ALDOA, a glycolytic enzyme targeted by HIF1 has been
also reported to play a significant role in malignancies (30).
Based on current literature, high levels of ALDOA promote
tumor growth and metastatic potential (31). Similarly to
HIF1, we found ALDOA to be up-regulated, a finding that is
in accordance with two studies (10, 11) that were performed
in Asian populations concerning ccRCC. Despite the lack of
additional studies in ccRCC, literature shows that increased
expression of ALDOA is linked with reduced survival in
several malignancies (31, 32). 

Regarding the role of non-coding RNAs, mir-122, targets
HIF1 (33) and has been studied in a plethora of cancers.
Whether its up-regulation boosts or inhibits
tumorigenesis/invasion is a matter of dispute (34, 35). In our
study, the expression of mir-122 was found to be increased
in ccRCC samples. Mir-122 up-regulation in RCC was also
observed in two other studies, which showed that increased
tissue levels of mir-122 promote tumorigenesis by targeting
the SRY2 and PI3K/Akt pathway (16, 33). However, a third
study suggested that increased serum levels of mir-122 serve
as a prognostic marker of RCC (36). Interestingly, Grimm et
al. (37), reported that mir-122 high expression leads to
reduced levels of SOX-6, a transcription factor with tumor
suppressive function. Thus, our results support the hypothesis
that mir-122 promotes RCC not only through the SRY and

Grammatikaki et al: HIF1-related Genes and Non-coding RNAs in Renal Cancer

1107

Figure 3. The hypothesized HIF1 pathway based on our results. White arrows indicate the observed gene expression changes compared to adjacent
tissue.



PI3K/Akt pathways but also via SOX-6, highlighting a
potential therapeutic role for mir-122 inhibitors. 

Additionally, MALAT-1 is also involved in the HIF1
pathway (38). Increased expression of MALAT-1 is a
common finding in several malignancies and has been
connected to reduced patient survivorship. Recently, Liu et
al. (14), showed that one of the mechanisms of action of
MALAT-1 is the decrease of mir-1271 levels in multiple
myeloma via a sponge function. This mechanism could also
occur in ccRCC, since in accordance with a previous study
(14) in our results, the up-regulation of MALAT-1 is also
followed by the down-regulation of mir-1271. Thus, our
results suggest, that at least one of the roles of MALAT-1 in
ccRCC lies on the reduction of mir-1271, which canonically
acts as tumor suppressor miRNA (39). Only one other study
has investigated the potential of mir-1271 as a urinary
biomarker but did not find any statistically significant
changes in its urine levels (40). To the best of our
knowledge, this is the first study to show the reduction of
mir-1271 in ccRCC patient samples.

Finally, we evaluated the SOX-6 protein levels and our
results showed decreased levels of SOX-6 protein in cancer
tissue compared to the control samples. Only 3 other studies
(41-43) have evaluated the role of SOX-6 in ccRCC, yet
none of them was performed on Caucasian populations.
These studies also showed SOX-6 down-regulation and that
its effects are mediated via the regulation of the Wnt/β-
catenin pathway. Moreover, decreased levels of SOX-6 have
been reported in cervical, prostate, pancreatic and breast
cancer (44-47), findings supporting the universal role of
SOX-6 in carcinogenesis. 

It should be noted that our study is not exhaustive regarding
the study of all miRNAs that target SOX-6. Apart from mir-
122 and mir-1271, several other miRNAs target SOX-6 (such
as miR-208b and miR-499) (47). The focus of this study was
the HIF pathway and thus we selected to study mir-122 and
mir-1271 because they participate in this pathway (18, 19). 

Collectively, our results support the hypothesis that there
is a connection between HIF1 and ALDOA, mir-122, mir-
1271, MALAT-1, and SOX-6 as shown in Figure 3. It should
be noted that there are two limitations to the present study:
the small number of samples and the fact that the samples
were obtained at a single hospital. However, our results
showed homogenous clustering with limited intra-group
(ccRCC and adjacent tissue) variation, a fact that minimizes
the potential impact of the sample size.

To conclude, HIF1 seems to be involved in the up-
regulation of ALDOA, mir-122, and MALAT-1, all of which
have been found to promote cancer-related properties. On the
contrary, mir-1271, which has tumor suppressive properties,
was reduced possibly via the sponge action of MALAT-1.
Finally, HIF1 up-regulation could indirectly (via mir-122)
down-regulate the tumor suppressive SOX-6 protein. These

findings not only indicate a potential pathway, but also could
propose the inhibition of these molecules for patients that are
not eligible for nephrectomy (including patients with
metastatic disease) in the treatment of ccRCC.
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