Abstract
Background/Aim: Skin regeneration is the intrinsic ability to repair damaged skin tissues to regaining skin well-being. Processes of wound healing, a major part of skin regeneration, involve various types of cells, including keratinocytes and dermal fibroblasts, through their autocrine/paracrine signals. The releasable factors from keratinocytes were reported to influence dermal fibroblasts behavior during wound-healing processes. Here, we developed a strategy to modulate cytokine components and improve the secretome quality of HaCaT cells, a nontumorigenic immortalized keratinocyte cell line, via the treatment of cordycepin, and designated as cordycepin-induced HaCaT secretome (CHS). Materials and Methods: The bioactivities of CHS were investigated in vitro on human dermal fibroblasts (HDF). The effects of CHS on HDF proliferation, reactive oxygen species-scavenging, cell migration, extracellular matrix production and autophagy activation were investigated by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide cell viability assay, dichloro-dihydro-fluorescein diacetate, the wound-healing assay, reverse transcription polymerase chain reaction and immunofluorescent microscopy. Finally, Proteome Profiler™ Array was used to determine the composition of the secretome. Results: CHS induced fibroblast proliferation/migration, reactive oxygen species-scavenging property, regulation of extracellular matrix synthesis, and autophagy activation. Such enhanced bioactivities of CHS were related to the increase of some key cytokines, including C-X-C motif chemokine ligand 1, interleukin 1 receptor A, interleukin 8, macrophage migration-inhibitory factor, and serpin family E member 1. Conclusion: These findings highlight the implications of cordycepin alteration of the cytokine profile of the HaCaT secretome, which represents a novel biosubstance for the development of wound healing and skin regeneration products.
- Received January 6, 2023.
- Revision received January 27, 2023.
- Accepted February 6, 2023.
- Copyright © 2023, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).