Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • In Vivo
    • Anticancer Research
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
In Vivo
  • Other Publications
    • In Vivo
    • Anticancer Research
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
In Vivo

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Visit iiar on Facebook
  • Follow us on Linkedin
Research ArticleArticles on Covid-19

Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2

STEVEN LEHRER and PETER H. RHEINSTEIN
In Vivo September 2020, 34 (5) 3023-3026; DOI: https://doi.org/10.21873/invivo.12134
STEVEN LEHRER
1Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York City, NY, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: steven.lehrer@mssm.edu
PETER H. RHEINSTEIN
2Severn Health Solutions, Severna Park, MD, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One drug that has attracted interest is the antiparasitic compound ivermectin, a macrocyclic lactone derived from the bacterium Streptomyces avermitilis. We carried out a docking study to determine if ivermectin might be able to attach to the SARS-CoV-2 spike receptor-binding domain bound with ACE2. Materials and Methods: We used the program AutoDock Vina Extended to perform the docking study. Results: Ivermectin docked in the region of leucine 91 of the spike and histidine 378 of the ACE2 receptor. The binding energy of ivermectin to the spike-ACE2 complex was -18 kcal/mol and binding constant was 5.8 e-08. Conclusion: The ivermectin docking we identified may interfere with the attachment of the spike to the human cell membrane. Clinical trials now underway should determine whether ivermectin is an effective treatment for SARS-Cov2 infection.

  • COVID-19
  • ivermectin
  • ACE2
  • spike protein
  • Received June 1, 2020.
  • Revision received June 18, 2020.
  • Accepted June 19, 2020.
  • Copyright© 2020, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved
View Full Text
PreviousNext
Back to top

In this issue

In Vivo: 34 (5)
In Vivo
Vol. 34, Issue 5
September-October 2020
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on In Vivo.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2
(Your Name) has sent you a message from In Vivo
(Your Name) thought you would like to see the In Vivo web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 9 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2
STEVEN LEHRER, PETER H. RHEINSTEIN
In Vivo Sep 2020, 34 (5) 3023-3026; DOI: 10.21873/invivo.12134

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2
STEVEN LEHRER, PETER H. RHEINSTEIN
In Vivo Sep 2020, 34 (5) 3023-3026; DOI: 10.21873/invivo.12134
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Entrectinib - a SARS-CoV-2 inhibitor in Human Lung Tissue (HLT) cells
  • Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient: a source of immune escape variants
  • Coronavirus Disease 2019 and Nasal Conditions: A Review of Current Evidence
  • THE THERAPEUTIC POTENTIAL OF IVERMECTIN FOR COVID-19: A SYSTEMATIC REVIEW OF MECHANISMS AND EVIDENCE
  • Google Scholar

More in this TOC Section

  • The Experience of Greece as a Model to Contain COVID-19 Infection Spread
  • Colorectal Cancer Surgery During the COVID-19 Pandemic: A Single Center Experience
  • Selection of the Appropriate Control Group Is Essential in Evaluating the Cytokine Storm in COVID-19
Show more Articles on Covid-19

Similar Articles

Keywords

  • COVID-19
  • ivermectin
  • ACE2
  • spike protein
In Vivo

© 2023 In Vivo

Powered by HighWire