Abstract
Background/Aim: Fine airborne particles of Particular Matter of less than 2.5 micrometers (PM2.5) have been recognized as a dominant air contamination causing critical health concerns. Herein, we determined whether isovitexin, a natural plant-derived compound could protect PM2.5-mediated oxidative stress and induce stemness in epidermal cells. Materials and Methods: Cell viability was detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) were determined by flow cytometry with 2’,7’-dichlorofluorescin diacetate (DCFH-DA). Protein hallmarks of stem cells were examined by western blot analysis. Results: PM2.5 treatment for 30 min increased the levels of intracellular ROS. Pre-treatment of cells with 10-50 μM of isovitexin dramatically inhibited the ROS induced by PM2.5. Antioxidant efficacy of isovitexin was also determined by the ROS scavenging activity against 2,2-diphenyl-2-picrylhydrazyl (DPPH), ABTS and superoxide anion radicals. In addition, we found that isovitexin enhanced the stem cell properties of keratinocytes, indicated by the significant increase in the levels of stem cell proteins. Conclusion: Isovitexin can be potentially used as an effective compound for preventing skin damage.
- Received August 8, 2019.
- Revision received September 15, 2019.
- Accepted September 16, 2019.
- Copyright© 2019, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved