Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • Anticancer Research
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • In Vivo
    • Anticancer Research
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
In Vivo
  • Other Publications
    • In Vivo
    • Anticancer Research
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
In Vivo

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • Anticancer Research
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Visit iiar on Facebook
  • Follow us on Linkedin
Review ArticleReviewsR

Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer

VILEM MALY, ONDREJ MALY, KATARINA KOLOSTOVA and VLADIMIR BOBEK
In Vivo July 2019, 33 (4) 1027-1037; DOI: https://doi.org/10.21873/invivo.11571
VILEM MALY
1Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
2Department of Thoracic Surgery, Krajska Zdravotni a.s. Hospital, Usti nad Labem, Czech Republic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ONDREJ MALY
1Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KATARINA KOLOSTOVA
1Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
VLADIMIR BOBEK
1Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
2Department of Thoracic Surgery, Krajska Zdravotni a.s. Hospital, Usti nad Labem, Czech Republic
3Department of Thoracic Surgery, Lower Silesian Oncology Centre, Wroclaw, Poland
43rd Department of Surgery, University Hospital FN Motol and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
5Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: vbobek@centrum.cz
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Circulating tumor cells (CTCs), detached from the primary tumor or metastases and shed in the patient's bloodstream, represent a relatively easily obtainable sample of the cancer tissue that can indicate the actual state of cancer, and their evaluation can be repeated many times during the course of treatment. As part of liquid biopsy, evaluation of CTCs provides a lot of clinically relevant information, which reflects the actual, real-time conditions of the disease. CTCs can be used in cancer diagnosis or screening, real-time long-term disease monitoring and even therapy guidance. Their analysis can include their number, morphology, and biological features by using immunocytochemistry and all “-omic” technologies. This review describes methods of CTC isolation and potential clinical utilization in lung cancer.

  • Circulating tumor cells
  • culturing
  • lung cancer
  • biomarker
  • liquid biopsy
  • review

Despite major advances in the diagnostics and treatment, lung cancer remains the most lethal cancer disease on a global scale. According to a WHO estimate, there were 2.09 million new lung cancer cases and 1.76 million lung cancer-related deaths in 2018 (1). Therefore, similarly to other cancer diagnoses, a significant effort is dedicated on the potential use of circulating tumor cells (CTCs) in prognosis assessment, disease monitoring and even in therapy management.

CTCs, detached from the primary tumor or metastases and shed in patient's bloodstream, represent a relatively easily obtainable sample of cancer tissue. As a liquid biopsy, evaluation of CTCs provides a lot of clinically relevant information, which reflects the actual, real-time conditions of the disease (2).

CTCs are very rare in the bloodstream; therefore, a number of different enrichment and isolation methods have been developed (2). Also, the evaluation of CTCs can be performed on many levels providing different kinds of information. The CTCs enrichment methods as well as their potential clinical use in lung cancer is introduced below.

CTC Isolation and Detection Methods – Basic Principles

Exploration of CTCs can provide a lot of clinically-relevant information; however, CTCs are very rare in the bloodstream. Every single CTC is surrounded by 106-107 mononuclear white blood cells (2, 3). Therefore, in order to be able to study and assess CTC- number and characteristics, it is necessary to separate them from the ambient blood cells.

Although many methods have been developed to isolate CTCs, there are only two basic approaches to isolate CTCs: a) isolation methods based on detection of specific surface markers of the CTCs (and/or white blood cells), also called “label-dependent systems/methods” and b) methods independent of specific markers, based on physical or biological properties of the CTCs, “label-independent systems/methods” (2).

Label-dependent methods. The term “label-dependent methods” comprises all CTC isolation methods, which identify CTCs according to the presence or absence of specific markers. The majority of label-dependent methods use primarily the epithelial cell adhesion molecule (Ep-CAM), a specific epithelial tissue marker (2). Other markers additionally used are human epidermal growth factor receptor 2 (HER2) (4), mucin 1 (MUC1), cytokeratins etc. (5, 6).

There is a major disadvantage common to label-dependent methods; CTCs must express the specific markers tracked by the particular isolation method. However, CTCs do not necessarily express these markers, therefore they may be missed. It has been shown that the CTC population has a continuum of phenotypes, from strictly epithelial CTCs, hybrid CTCs to mesenchymal CTCs (7), due to their ability to undergo epithelial-to-mesenchymal transition (2). Each phenotype is characterized by the expression of different markers. Epithelial CTCs express EpCAM and cytokeratins, mesenchymal CTCs express vimentin or N-Cadherin, while hybrid CTCs express both epithelial and mesenchymal markers (7). Mesenchymal CTCs would probably be missed by most label-dependent methods. Some studies evaluating efficiency of label-dependent methods have shown that only a small fraction of CTCs is detected when compared to label-independent systems (8, 9). To overcome the CTC-specific marker disadvantage, different label-dependent methods include negative depletion of CD45-positive leucocytes (10).

CELLSEARCH® circulating tumor cell test. Despite the disadvantages of label-dependent methods, the CellSearch® (Menarini Silicon Biosystems) method is still being accepted as the “gold standard” among the CTC-isolation and detection methods. It is the only CTC-isolation system that has been approved by the US Food and Drug Administration (FDA) for clinical use in patients with metastatic breast, colorectal and prostate cancer (11). So far, the lung cancer field is not covered by CellSearch®.

The CellSearch® method is based on the anti-EpCAM immunomagnetic enrichment of blood sample and downstream CTC detection and evaluation by immunofluorescence. Whole blood is supplemented with ferrofluid nanoparticles conjugated with anti-EpCAM antibodies in order to capture CTCs. After further processing, cells are stained with DAPI (unspecific nuclear stain) and fluorescence-labelled antibodies against cytokeratins CK8, CK18 and/or CK19 and against the CD45 marker. The sample is analysed by automated fluorescence microscopy and evaluated by trained pathologists. CTCs are defined as DAPI+, CK8/18/19+ and CD45- cells, and leucocytes are defined as DAPI+ and CD45+ cells (11, 12). To improve CellSearch® method performance, an additional fluorescence channel has been added to enable detection of another marker of interest (e.g. HER2) (13).

CTC count obtained with the CellSearch® method can be used as a prognostic factor. The number of CTCs per 7.5 ml of blood ≥5 in metastatic breast and prostate cancer and ≥3 in metastatic colorectal cancer are associated with worse disease-free and overall survival rates (14-16). CellSearch® system is often used as a reference method while developing new isolation methods.

Adna test. AdnaTest (Qiagen) is a method combining specific separation of CTCs and a relatively easy way of CTC transcriptome evaluation. CTCs are immuno-magnetically separated from other blood components using magnetic beads conjugated with anti-EpCAM and anti-MUC1 antibodies (5). Obtained cells are lysed and mRNA is isolated and further evaluated. AdnaTest kits are produced in several variants, enabling the user to perform reverse transcription PCR on the retrieved mRNA after isolation and determine the expression of chosen genes (e.g. AdnaTest LungCancer variant offers assessment of EpCAM, ALDH1 and additionally TWIST1, Akt-2 and PI3Kα expression) (5, 17).

MagSweeper (non-commercial). MagSweeper is another method using anti-EpCAM immunomagnetic separation. The blood sample is diluted with buffer solution and ferrofluid-labelled anti-EpCAM antibodies are added to the solution. Cells are collected with rotating magnetic rods, which are put into the sample. Washing steps are performed and the obtained cells are subsequently released from the rods using external magnets (11, 18). Enrichment rates of CTCs are reported to be very high (18). Enriched cells can be cultivated and/or further analysed.

Magnetic-activated Cell Sorting (MACS). MACS (Miltenyi Biotec) is another modification of anti-EpCAM immunomagnetic separation. CTCs are captured on immunomagnetic beads and the sample is passed through a column, which is placed in a strong magnetic field. Non-captured cells pass the column, while CTCs on magnetic beads stay inside the column. Magnetic field is then removed and CTCs are eluted. Captured cells can be cultivated and/or further analysed (19).

Microfluidic chip methods. Microfluidic chip technologies use anti-EpCAM separation under the condition of regulated flow inside the separation device. Antibodies are conjugated with magnetic beads and the cells captured on the beads stay inside the chip due to magnetic field (Isoflux) (2, 20). Alternatively, the antibodies are directly attached to the wall of the microfluidic device (CTC-Chip, HB-Chip) (21, 22). Captured cells are eluted and cultivated/analysed.

EPISPOT Assay (non-commercial). EPISPOT assay represents a CD45+ cell depletion method. CTCs are enriched by leucocyte depletion and cultured in wells where antibodies against MUC-1, CK19 and other proteins according to the cancer type have been attached. Selected proteins are then marked with adequate fluorochrome-labelled antibodies and visualised with fluorescence microscopy (5, 10).

CellCollector®. CellCollector® (GILUPI) is a modification of anti-EpCAM isolation method for use in vivo. CellCollector uses a wire with anti-EpCAM antibodies attached on its surface. This wire is inserted through a cannula directly into patient's bloodstream and is exposed to a high amount of patient's blood (units of litres compared to 7.5 ml used in other systems) (2).

Label-independent methods. Contrary to the label-dependent methods, which are based on specific surface markers to separate CTCs, label-independent methods do not rely on surface markers. These methods use specific physical or biological properties of CTCs to isolate them, and include size-based separation, density-based separation, systems using specific electrical properties of the CTCs (dielectrophoresis) and systems using the invasive capacity of CTCs (2, 3, 5, 23).

The primary advantage of label-independent methods is that they are marker-independent. Label-dependent methods isolate only CTCs that express the targeted markers, while label-independent methods should be able to isolate a wider continuum of potential CTCs. A very precise subsequent characterization is needed as many other cells (e.g. leucocytes) are isolated during the label-independent separation process.

Size-based separation. Size-based separation methods use special porous membranes, with a pore size of approximately ±8 μm. Erythrocytes pass the membrane through the pores; CTCs are captured in a mixture with leucocytes that should be discarded. Cells captured on the membrane can usually be cultivated, stained and evaluated using both bright-field and/or fluorescence microscopy. Both mRNA and DNA can be isolated from the CTCs and further examined (24, 25). Size-based separation systems are represented for example by the ISET® system (Rarecells), Screencell® system (Screencell) (5) or MetaCell® system (MetaCell Ltd.) (25), and CellSieve® (Creatv MicroTech Inc.). Microcavity Array system (MCA) also uses porous membrane, but the pores are regularly arranged, thus allowing single CTC tracking (8). Parsortix™ technology (Angle plc) is a representative of microfluidic technology using separation by size and cell deformability (26).

Density-based separation (density gradient centrifugation). Density gradient centrifugation (using Ficoll-Paque® solution) is a method routinely used to separate mononuclear cells from a blood sample. Upon centrifugation of whole blood and in the presence of suitable separation medium, layers containing particular cell types are formed. The same method can be applied for CTCs isolation. They have similar density as mononuclear cells, so they are collected in the same layer. This method is relatively inexpensive, but the contamination by white blood cells is very high (27, 28). OncoQuick® system (Greiner Bio One) uses improved density-based separation method with special porous barrier above the separation medium. The presence of this barrier increases the efficiency of the separation process (28, 29).

Separation using the invasive capacity of CTCs. VitaAssay™ (Vitatex) is a representative of the separation methods based on the invasive capacity of CTCs. This method is based on the property of CTCs that when placed on a collagenous cell adhesion matrix (CAM) they penetrate this matrix and ingest it. CAM is fluorescently labelled and thus cells ingesting CAM are visualised (30).

Methods of combined approaches. Some platforms combine both label-dependent and label-independent approaches to increase efficiency of CTC capture. As an example, CTC-iChip is a microfluidic device that combines size-based filtration and immunomagnetic separation. There are two modes of CTC-iChip: positive selection mode, which uses size-based separation and then captures the EpCAM+ fraction of the cells; and negative selection mode, which uses size-based separation and then depletes CD45+ cells (31).

Levels of CTC Evaluation in NSCLC

Information potential carried by CTCs can be studied at many levels: simple presence of CTCs, CTC count, morphology and immuno-cytochemistry, genomic, transcriptomic, and proteomic analysis.

Presence of CTCs. The most basic level of CTC evaluation is a qualitative statement of their presence. Devriese et al. have shown, using a positive immunomagnetic enrichment method, that CTCs were present in 21 out of 46 (46%) stage IV NSCLC patients (32). Epithelial circulating cells were also found in 3 out of 46 (7%) healthy controls. In another study, Hofman et al. have shown, using size-based filtration method, that the presence of CTCs is independent of the stage of the tumor (CTCs found in 49% stage I, 48% stage II, 48% stage III and 52% stage IV patients) or tumor histology (e.g. 47% samples of patients with adenocarcinoma or 40% samples of patients with squamous cell carcinoma were CTC-positive) (33). Therefore, the presence of CTCs in the patient's bloodstream provides an uncomplete information that is very limited and not sufficient for clinical utilization.

CTC count in standardised blood sample. To obtain clinically-relevant information using CTCs, not only qualitative but quantitative assessments of CTCs in blood samples should be performed. Several studies have shown that in breast, prostate and colorectal cancer (14-16), the CTC count at baseline could be used as a prognostic factor. Krebs et al. have divided patients into favourable (<5 CTCs at a baseline/7.5 ml blood) and unfavourable (≥5 CTCs at a baseline/7.5 ml blood) groups. CTCs were isolated using the CellSearch® system. Patients in the favourable group had better progression-free survival (PFS) and overall survival (OS) rates than patients in the unfavourable group (PFS median 6.8 vs. 2.8 months and OS median 8.1 vs. 4.3 months) (34). A similar study performed by Zhang et al., has shown that CTC count ≥8 before chemotherapy was a strong and independent predictor of worse PFS (35). However, another study by Coco et al. showed a non-significant or even inverse relationship between CTC counts and PFS and OS. (36) A comparison of these and other similar studies using CellSearch® system pointed that they differ significantly in the percentage of CTC-positive patients (22% to 76%) at baseline (37-39). The reproducibility is low probably due to the CellSearch® system disadvantage as a label-dependent isolation method.

An analogous study used ISET® size-based separation system. Cut-off for the sorting of the patients into favourable and unfavourable groups was 50 circulating cells of nonhaematologic origin. Patients in the favourable group had again better PFS and OS rates (40).

CTC count at baseline can be used as a predictor of PFS and OS, but, as a single number, the obtained information is limited. Monitoring CTC counts in patient blood samples during therapy can offer novel information. With baseline CTC count as a reference, diminution of CTC counts after surgery and/or chemotherapy may indicate remission. Subsequent CTC counts can serve as an indicator of minimal residual disease; persistent low or zero CTC counts suggest establishment of remission. Conversely, increasing CTC numbers probably indicate a relapse of the disease, even prior to evident clinical symptoms. Therefore, increasing CTC counts during therapy could serve as an indication to change the chemotherapeutic drug (41). Utilization of CTCs in monitoring therapy is further discussed below. In lung cancer, Tong et al. have shown that the change of CTC counts during chemotherapy can act as an indicator of a chemotherapeutic response and as a strong PFS and OS predictor (42).

Morphology and biological features. Morphological evaluation is a necessary step to identify and discriminate CTCs from the surrounding cells while using label-independent CTC isolation methods. Basic morphological malignant features include: increased nucleus size and area; irregular nucleus shape; specific chromatin structure (chromatin granules); increased number and size and/or changed shape of nucleoli; increased cell size and area; increased N:C ratio; presence of mitotic figures, formation of 3D sheets of cells during culture and more. Although these parameters usually serve for CTC identification only, they are measurable and could potentially be used as additional markers.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table I.

Example of a panel of genes for CTCs transcriptomic analysis (54).

Del Ben et al. have shown that CTCs secrete lactate and acidify their microenvironment. They measured pH of aqueous droplets containing trapped CTCs, in oil emulsion, using pH sensitive fluorescent dye (43).

The metabolism of CTCs is supposed to be intensified. To visualise these hypermetabolic CTCs, methods based on glucose uptake can be used. Cells can be supplemented with fluorescent glucose analogue (e.g. 2-NBDG) for a short time and then be evaluated using fluorescence microscopy. Turetta et al. have shown that glucose uptake values of CTCs are a median of 10 times higher than those of white blood cells (44).

Immunocytochemistry. Irrespective of using immunocytochemistry in label-dependent isolation methods, some specific surface or intracellular molecules of CTCs are used as targets for immunocytochemistry or immunostaining in lung cancer. Ilie et al. evaluated the expression of MET protein using immunocytochemistry on CTCs isolated by the ISET® system from NSCLC patients' blood samples. They showed that expression of MET in CTCs correlates with expression of MET in primary tumor (45).

Another study by Guibert et al. has focused on PD-L1 expression in CTCs from patients with NSCLC. They used immunofluorescent staining to visualize CTCs expressing PD-L1 and to determine the percentage of PD-L1 positive CTCs. They also compared PD-L1 expression in CTCs and in the primary tumor and reported that CTCs were more often PD-L1 positive than the tissue. According to this finding, they suggested that PD-L1 expression in CTCs could be used as an indication for treatment using PD-1/PD-L1 immune checkpoint inhibitors (46).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

CTC count monitoring including gene expression profiling of tumor associated (TA) and chemotherapy associated (CA) genes to guide therapy in time (41, 62).

Genomic analysis. DNA analysis and mutation assessment of the CTCs can provide a lot of clinically-relevant information. Although CTCs represent only a subpopulation of all tumor cells, it has been shown that they can reflect quite well the primary tumor heterogeneity. Turetta et al. have compared EGFR and KRAS mutations in primary tumors and in CTCs and reported that the same mutations were present in 16 out of 23 cases (70%) (44). Marchetti et al. have detected the same EGFR mutation in CTCs and in primary tumors in 29 out of 31 cases (94%) (47).

The genes often tested in NSCLC include: EGFR, ALK, RET, ROS-1, BRAF, ERBB2, PIK3CA, KRAS, AKT1 and many others. DNA methylation analysis has also been performed (48-50). However, conventional methods, including cytogenetical and molecular-cytogenetical techniques can be also applied in CTCs. The standard technology used for gene and chromosomal rearrangements is fluorescent in situ hybridization (FISH) (e.g. in ALK rearrangements) (51). Nowadays, single-cell genotyping has become a very popular method, allowing determination of cancer “phylogenesis” and evolution. Demeulemeester et al. have constructed cancer “phylogenetic” trees using single-cell sequencing (52).

Clinical utility of genomic analyses has been demonstrated using the EGFR T790M variant, which is related to an acquired resistance to gefitinib or erlotinib. The discovery of this mutation even in a small portion of cells should lead to reassessment of eventually incompatible treatment (53).

Transcriptomic analysis. Another information-containing molecule that could be evaluated in CTCs is RNA, primarily mRNA. The amounts of specific mRNA transcripts inside the cell are in concordance with expression levels of corresponding genes. Therefore, reverse transcription followed by quantitative PCR (qPCR) are used to measure gene expression (54). An example of panel of genes of interest is presented in Table I.

View this table:
  • View inline
  • View popup
Table II.

Overview of chosen studies regarding CTCs in lung cancer.

In lung cancer CTCs, KRT7 and TTF-1 levels have been found to be elevated (55). TTF-1 is considered as highly specific marker for lung adenocarcinomas (56). The utilization of gene expression profiling is well-established in breast cancer; expression levels of ER, PR and HER2 in the primary tumor, but also possibly in CTCs, are used to choose appropriate hormone treatment (57).

When elevated, chemoresistance genes provide CTC immunity against specific drugs (e.g. MRP5 is linked with resistance to 5-fluorouracil, platinum derivatives and methotrexate) (41). The finding of elevated expression of some chemoresistance-associated genes should lead to reassessment of eventually incompatible treatment.

RNA sequencing is another method used for assessing precisely the whole transcriptome, especially when assessed at a single-cell level (58, 59).

Proteomic analysis. Protein profiling of CTCs is not a popular analysis of CTCs. However, methods for proteomic analysis of single cells using mass spectrometry or western blotting have been developed (60, 61).

Potential Clinical CTC Utilization

Current clinical applications of CTC – testing can be revised in Table II, where important results of CTC- clinical studies in lung cancer are summarized.

Utilization of CTC in monitoring disease development. When compared to a conventional biopsy, CTC evaluation is relatively inexpensive and non-invasive and therefore repeatable many times during therapy. All these facts make CTC analysis a powerful instrument in monitoring cancer development.

CTC count and count changes during therapy are basic but valid indicators of cancer progression. As described above, CTC count has been proven to be a prognosis predictor in many cancer types including lung cancer (34-40). Monitoring CTC counts during therapy is an instrument that allows assessment of disease development in real time, even prior to overt clinical signs of relapse. A decrease in CTC count after surgery and/or chemotherapy is probably a sign of remission. In contrast, an increase in CTC count indicates reactivation of disease, which should lead to revalidation of therapy (41, 62).

Molecular analysis (e.g. gene expression profiling) during therapy can complement assessment of CTC count and provide additional valuable information. Molecular analysis can visualise formation of new resistant CTC subclones during therapy (Figure 1) and identify them in terms of mutation analysis, tumor-associated gene expression, chemoresistance-associated genes etc. (41). Therefore, it provides the ability to revalidate actual treatment and eventually replace it with a compatible one.

Cancer screening and exploring cancer origin by CTC-analysis. CTCs can be detected in blood even in early stages of tumor development (33), therefore they are candidates for cancer screening. Cells classified as CTCs are very rare in blood of healthy people or patients with benign tumours (63). However, there are some conditions under which circulating non-haematological cells can be found in circulation, e.g. Crohn disease (64), endometriosis (65) or pregnancy (trophoblasts are found in maternal blood) (66). It is necessary to take this into account when evaluating blood samples for CTCs.

There are only few studies regarding CTC-based cancer screening. Castro et al. have evaluated blood samples of 3388 individuals aged 45-80 years with no cancer history. They found circulating non-haematological cells in the blood of 107 (3.2%) individuals (67).

In lung cancer, there were attempts to combine CTC assessment with established screening methods. He et al. had focused on improving specificity of low-dose CT screening program by combining it with subsequent CTC evaluation. Patients with identified pulmonary “ground-glass” nodules and healthy controls were evaluated with regard to CTC counts. Only some patients with nodules had CTCs present in their blood. According to subsequent molecular analysis, these CTCs were found to have “malignant tendency” (68). Another study performed by Ilie et al. had focused on CTC assessment in patients with chronic obstructive pulmonary disease (COPD). They detected CTCs in 5 out of 168 (3%) patients. Interestingly, all of these five patients developed lung cancer within 4 years. Furthermore, none of the CTC-negative patients developed cancer within the monitored period. Some studies have confirmed these findings (62, 69, 70).

CTC screening complemented with immunohistochemistry or gene expression profiling of detected cells could aid in tracing the primary tumor origin. Lu et al. have found that KRT7 and TTF-1 positive cells corresponded to lung cancer. Accordingly, KRT20 and CDX2 positive cells coincided with colorectal cancer, and PSA and PSMA positive cells with prostate cancer (55).

Conclusion

CTCs are a very intensively studied field of cancer biology. Although biological knowledge underlying CTCs is still limited, it has been demonstrated that they can be extensively utilized in lung cancer management. The role of CTCs is already well established in cancer prognosis, offering another factor to complement conventional TNM staging system. Recent findings suggest that CTCs in (not only) lung cancer can offer more information than plain disease prognosis. CTCs can be used in cancer diagnosis or screening, real-time long-term disease monitoring and even in therapy guidance. They represent relatively easily obtainable sample of the tumor, describing its actual state, and their evaluation can be repeated many times during the treatment. Their count, morphology and biological features including expression of certain markers, proteins, genes and RNAs provide important clinically useful information.

As demonstrated above, evaluation of CTCs provides a lot of clinically relevant and valuable information in lung cancer as well as in other cancer diseases. The future of CTCs lies in complex disease monitoring and accurate therapy guidance. Implementation of CTC testing into everyday practice could help to improve cancer treatment efficacy and to get a little step closer to cancer cure.

Acknowledgements

This study was supported by Krajska zdravotni, a.s, Grant nr.: 217104003.

Footnotes

  • Authors' Contributions

    VM, OM prepared the manuscript, KK revised and complemented the methodological part of data and VB revised and complemented the clinical part of the presented data.

  • This article is freely accessible online.

  • Conflicts of Interest

    The Authors have no conflict of interest regarding this study.

  • Received April 5, 2019.
  • Revision received May 11, 2019.
  • Accepted May 13, 2019.
  • Copyright © 2019 The Author(s). Published by the International Institute of Anticancer Research.

References

  1. ↵
    1. Ferlay J,
    2. Ervik M,
    3. Lam F,
    4. Colombet M,
    5. Mery L,
    6. Piñeros M,
    7. Znaor A,
    8. Soerjomataram I,
    9. Bray F
    : Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer, 2018. Available from: https://gco.iarc.fr/today, accessed (3 February 2019).
  2. ↵
    1. Joosse SA,
    2. Gorges TM,
    3. Pantel K
    : Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med 7(1): 1-11, 2015. PMID: 25398926. DOI: 10.15252/emmm.201303698
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Alix-Panabières C,
    2. Schwarzenbach H,
    3. Pantel K
    : Circulating tumor cells and circulating tumor DNA. Annu Rev Med 63(1): 199-215, 2012. PMID: 22053740. DOI: 10.1146/annurev-med-062310-094219
    OpenUrlCrossRefPubMed
  4. ↵
    1. Danila DC,
    2. Samoila A,
    3. Patel C,
    4. Schreiber N,
    5. Herkal A,
    6. Anand A,
    7. Bastos D,
    8. Heller G,
    9. Fleisher M,
    10. Scher HI
    : Clinical validity of detecting circulating tumor cells by AdnaTest assay compared with direct detection of tumor mRNA in stabilized whole blood, as a biomarker predicting overall survival for metastatic castration-resistant prostate cancer patients. Cancer J 22(5): 315-320, 2016. PMID: 27749322. DOI: 10.1097/PPO.0000000 000000220
    OpenUrl
  5. ↵
    1. Bertoldo F,
    2. Boccardo F,
    3. Bombardieri E,
    4. Evangelista L,
    5. Valdagni R
    : Bone metastases from prostate cancer: Biology, diagnosis and management, 2017. Springer International Publishing. DOI: 10.1007/978-3-319-42327-2
  6. ↵
    1. Wang Y,
    2. Zhang Y,
    3. Du Z,
    4. Wu M,
    5. Zhang G
    : Detection of micrometastases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine 7: 2315-2324, 2012. PMID: 22661888. DOI: 10.2147/IJN.S30593
    OpenUrlPubMed
  7. ↵
    1. Correnti M,
    2. Raggi C
    : Stem-like plasticity and heterogeneity of circulating tumor cells: Current status and prospect challenges in liver cancer. Oncotarget 8(4): 7094-7115, 2017. PMID: 27738343. DOI: 10.18632/oncotarget.12569
    OpenUrl
  8. ↵
    1. Hosokawa M,
    2. Kenmotsu H,
    3. Koh Y,
    4. Yoshino T,
    5. Yoshikawa T,
    6. Naito T,
    7. Takahashi T,
    8. Murakami H,
    9. Nakamura Y,
    10. Tsuya A,
    11. Shukuya T,
    12. Ono A,
    13. Akamatsu H,
    14. Watanabe R,
    15. Ono S,
    16. Mori K,
    17. Kanbara H,
    18. Yamaguchi K,
    19. Tanaka T,
    20. Matsunaga T,
    21. Yamamoto N
    : Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS One 8(6): e67466, 2013. PMID: 23840710. DOI: 10.1371/ journal.pone.0067466
    OpenUrlCrossRefPubMed
  9. ↵
    1. Lowes LE,
    2. Goodale D,
    3. Xia Y,
    4. Postenka C,
    5. Piaseczny MM,
    6. Paczkowski F,
    7. Allan AL
    : Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer. Oncotarget 7(46): 76125-76139, 2016. PMID: 27764810. DOI: 10.18632/oncotarget.12682
    OpenUrl
  10. ↵
    1. Alix-Panabieres C
    : Epispot assay: Detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res 195: 69-76, 2012. PMID: 22527495. DOI: 10.1007/978-3-642-28160-0_6
    OpenUrlCrossRefPubMed
  11. ↵
    1. Cote RJ,
    2. Datar RH
    : Circulating tumor cells. Springer New York, 2016. DOI: 10.1007/978-1-4939-3363-1
  12. ↵
    1. Janssen Diagnostics, LLC
    : CELLSEARCH® Circulating Tumor Cell Kit (Epithelial) Instructions for Use. Available at https://documents.cellsearchctc.com/pdf/e631600001/e631600001_EN.pdf. Last accessed on 7th May 2019.
  13. ↵
    1. Raimondi C,
    2. Gradilone A,
    3. Naso G,
    4. Cortesi E,
    5. Gazzaniga P
    : Clinical utility of circulating tumor cell counting through cellsearch((r)): The dilemma of a concept suspended in limbo. Onco Targets Ther 7: 619-625, 2014. PMID: 24790460. DOI: 10.2147/OTT.S46200
    OpenUrlPubMed
  14. ↵
    1. Cristofanilli M,
    2. Budd GT,
    3. Ellis MJ,
    4. Stopeck A,
    5. Matera J,
    6. Miller MC,
    7. Reuben JM,
    8. Doyle GV,
    9. Allard WJ,
    10. Terstappen LW,
    11. Hayes DF
    : Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8): 781-791, 2004. PMID: 15317891. DOI: 10.1056/NEJMoa040766
    OpenUrlCrossRefPubMed
    1. de Bono JS,
    2. Scher HI,
    3. Montgomery RB,
    4. Parker C,
    5. Miller MC,
    6. Tissing H,
    7. Doyle GV,
    8. Terstappen LW,
    9. Pienta KJ,
    10. Raghavan D
    : Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19): 6302-6309, 2008. PMID: 18829513. DOI: 10.1158/1078-0432.CCR-08-0872
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Cohen SJ,
    2. Punt CJ,
    3. Iannotti N,
    4. Saidman BH,
    5. Sabbath KD,
    6. Gabrail NY,
    7. Picus J,
    8. Morse MA,
    9. Mitchell E,
    10. Miller MC,
    11. Doyle GV,
    12. Tissing H,
    13. Terstappen LW,
    14. Meropol NJ
    : Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol 20(7): 1223-1229, 2009. PMID: 19282466. DOI: 10.1093/annonc/mdn786
    OpenUrlCrossRefPubMed
  16. ↵
    1. QUIAGEN
    : CTCs and AdnaTest flyer. Available at: https://www.qiagen.com/us/resources/download.aspx?id=eedcab71-d26d-4414-96d7-cf8206db23bd&lang=en. Last accessed on 7th May 2019.
  17. ↵
    1. Wang Y,
    2. Navin NE
    : Advances and applications of single-cell sequencing technologies. Mol Cell 58(4): 598-609, 2015. PMID: 26000845. DOI: 10.1016/j.molcel.2015.05.005
    OpenUrlCrossRefPubMed
  18. ↵
    1. Miltenyi Biotec
    : MACS® Cell Separation. Available at: https://www.miltenyibiotec.com/_Resources/Persistent/b5349effdd595b72195e588aff033be3e24706bd/IM0020021.pdf. Last accessed on 7th May 2019.
  19. ↵
    1. Fluxion Biosciences
    : IsoFlux™ System. Available at: https://www.accela.eu/files/products/44/isoflux-brochure.pdf. Last accessed on 7th May 2019.
  20. ↵
    1. Nagrath S,
    2. Sequist LV,
    3. Maheswaran S,
    4. Bell DW,
    5. Irimia D,
    6. Ulkus L,
    7. Smith MR,
    8. Kwak EL,
    9. Digumarthy S,
    10. Muzikansky A,
    11. Ryan P,
    12. Balis UJ,
    13. Tompkins RG,
    14. Haber DA,
    15. Toner M
    : Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173): 1235-1239, 2007. PMID: 18097410. DOI: 10.1038/nature06385
    OpenUrlCrossRefPubMed
  21. ↵
    1. Stott SL,
    2. Hsu CH,
    3. Tsukrov DI,
    4. Yu M,
    5. Miyamoto DT,
    6. Waltman BA,
    7. Rothenberg SM,
    8. Shah AM,
    9. Smas ME,
    10. Korir GK,
    11. Floyd FP Jr..,
    12. Gilman AJ,
    13. Lord JB,
    14. Winokur D,
    15. Springer S,
    16. Irimia D,
    17. Nagrath S,
    18. Sequist LV,
    19. Lee RJ,
    20. Isselbacher KJ,
    21. Maheswaran S,
    22. Haber DA,
    23. Toner M
    : Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 107(43): 18392-18397, 2010. PMID: 20930119. DOI: 10.1073/pnas.1012539107
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Harouaka RA,
    2. Nisic M,
    3. Zheng SY
    : Circulating tumor cell enrichment based on physical properties. J Lab Autom 18(6): 455-468, 2013. PMID: 23832928. DOI: 10.1177/2211068 213494391
    OpenUrlCrossRefPubMed
  23. ↵
    1. Laget S,
    2. Broncy L,
    3. Hormigos K,
    4. Dhingra DM,
    5. BenMohamed F,
    6. Capiod T,
    7. Osteras M,
    8. Farinelli L,
    9. Jackson S,
    10. Paterlini-Brechot P
    : Technical insights into highly sensitive isolation and molecular characterization of fixed and live circulating tumor cells for early detection of tumor invasion. PLoS One 12(1): e0169427, 2017. PMID: 28060956. DOI: 10.1371/journal. pone.0169427
    OpenUrl
  24. ↵
    1. Kolostova K,
    2. Cegan M,
    3. Bobek V
    : Circulating tumour cells in patients with urothelial tumours: Enrichment and in vitro culture. Can Urol Assoc J 8(9-10): E715-720, 2014. PMID: 25408812. DOI: 10.5489/cuaj.1978
    OpenUrlPubMed
  25. ↵
    1. Hvichia GE,
    2. Parveen Z,
    3. Wagner C,
    4. Janning M,
    5. Quidde J,
    6. Stein A,
    7. Muller V,
    8. Loges S,
    9. Neves RP,
    10. Stoecklein NH,
    11. Wikman H,
    12. Riethdorf S,
    13. Pantel K,
    14. Gorges TM
    : A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer 138(12): 2894-2904, 2016. PMID: 26789903. DOI: 10.1002/ijc.30007
    OpenUrlCrossRefPubMed
  26. ↵
    1. Pirozzi G,
    2. Tirino V,
    3. Camerlingo R,
    4. La Rocca A,
    5. Martucci N,
    6. Scognamiglio G,
    7. Franco R,
    8. Cantile M,
    9. Normanno N,
    10. Rocco G
    : Prognostic value of cancer stem cells, epithelial-mesenchymal transition and circulating tumor cells in lung cancer. Oncol Rep 29(5): 1763-1768, 2013. PMID: 23426441. DOI: 10.3892/or.2013.2294
    OpenUrl
  27. ↵
    1. Zhang J,
    2. Chen K,
    3. Fan ZH
    : Circulating tumor cell isolation and analysis. Adv Clin Chem 75: 1-31, 2016. PMID: 27346614. DOI: 10.1016/bs.acc.2016.03.003
    OpenUrl
  28. ↵
    1. Greiner Bio-One
    : OncoQuick® Instruction Manual. Available at: https://www.gbo.com/fileadmin/user_upload/999999_UserGuide_OncoQuick_E.pdf. Last accessed on 7th May 2019.
  29. ↵
    1. Lu J,
    2. Fan T,
    3. Zhao Q,
    4. Zeng W,
    5. Zaslavsky E,
    6. Chen JJ,
    7. Frohman MA,
    8. Golightly MG,
    9. Madajewicz S,
    10. Chen WT
    : Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int J Cancer 126(3): 669-683, 2010. PMID: 19662651. DOI: 10.1002/ijc.24814
    OpenUrlCrossRefPubMed
  30. ↵
    1. Ozkumur E,
    2. Shah AM,
    3. Ciciliano JC,
    4. Emmink BL,
    5. Miyamoto DT,
    6. Brachtel E,
    7. Yu M,
    8. Chen PI,
    9. Morgan B,
    10. Trautwein J,
    11. Kimura A,
    12. Sengupta S,
    13. Stott SL,
    14. Karabacak NM,
    15. Barber TA,
    16. Walsh JR,
    17. Smith K,
    18. Spuhler PS,
    19. Sullivan JP,
    20. Lee RJ,
    21. Ting DT,
    22. Luo X,
    23. Shaw AT,
    24. Bardia A,
    25. Sequist LV,
    26. Louis DN,
    27. Maheswaran S,
    28. Kapur R,
    29. Haber DA,
    30. Toner M
    : Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179): 179ra147, 2013. PMID: 23552373. DOI: 10.1126/scitranslmed.3005616
    OpenUrl
  31. ↵
    1. Devriese LA,
    2. Bosma AJ,
    3. van de Heuvel MM,
    4. Heemsbergen W,
    5. Voest EE,
    6. Schellens JH
    : Circulating tumor cell detection in advanced non-small cell lung cancer patients by multi-marker qpcr analysis. Lung Cancer 75(2): 242-247, 2012. PMID: 21820198. DOI: 10.1016/j.lungcan.2011.07.003
    OpenUrlPubMed
  32. ↵
    1. Hofman V,
    2. Long E,
    3. Ilie M,
    4. Bonnetaud C,
    5. Vignaud JM,
    6. Flejou JF,
    7. Lantuejoul S,
    8. Piaton E,
    9. Mourad N,
    10. Butori C,
    11. Selva E,
    12. Marquette CH,
    13. Poudenx M,
    14. Sibon S,
    15. Kelhef S,
    16. Venissac N,
    17. Jais JP,
    18. Mouroux J,
    19. Molina TJ,
    20. Vielh P,
    21. Hofman P
    : Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (iset) method. Cytopathology 23(1): 30-38, 2012. PMID: 21210876. DOI: 10.1111/j.1365-2303.2010.00835.x
    OpenUrlCrossRefPubMed
  33. ↵
    1. Krebs MG,
    2. Sloane R,
    3. Priest L,
    4. Lancashire L,
    5. Hou JM,
    6. Greystoke A,
    7. Ward TH,
    8. Ferraldeschi R,
    9. Hughes A,
    10. Clack G,
    11. Ranson M,
    12. Dive C,
    13. Blackhall FH
    : Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol 29(12): 1556-1563, 2011. PMID: 21422424. DOI: 10.1200/JCO.2010.28.7045
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Zhang Z,
    2. Xiao Y,
    3. Zhao J,
    4. Chen M,
    5. Xu Y,
    6. Zhong W,
    7. Xing J,
    8. Wang M
    : Relationship between circulating tumour cell count and prognosis following chemotherapy in patients with advanced non-small-cell lung cancer. Respirology 21(3): 519-525, 2016. PMID: 26661896. DOI: 10.1111/resp.12696
    OpenUrl
  35. ↵
    1. Coco S,
    2. Alama A,
    3. Vanni I,
    4. Fontana V,
    5. Genova C,
    6. Dal Bello MG,
    7. Truini A,
    8. Rijavec E,
    9. Biello F,
    10. Sini C,
    11. Burrafato G,
    12. Maggioni C,
    13. Barletta G,
    14. Grossi F
    : Circulating cell-free DNA and circulating tumor cells as prognostic and predictive biomarkers in advanced non-small cell lung cancer patients treated with first-line chemotherapy. Int J Mol Sci 18(5), 2017. PMID: 28492516. DOI: 10.3390/ijms18051035
  36. ↵
    1. Kapeleris J,
    2. Kulasinghe A,
    3. Warkiani ME,
    4. Vela I,
    5. Kenny L,
    6. O'Byrne K,
    7. Punyadeera C
    : The prognostic role of circulating tumor cells (ctcs) in lung cancer. Front Oncol 8: 311, 2018. PMID: 30155443. DOI: 10.3389/fonc.2018.00311
    OpenUrl
    1. Crosbie PA,
    2. Shah R,
    3. Krysiak P,
    4. Zhou C,
    5. Morris K,
    6. Tugwood J,
    7. Booton R,
    8. Blackhall F,
    9. Dive C
    : Circulating tumor cells detected in the tumor-draining pulmonary vein are associated with disease recurrence after surgical resection of nsclc. J Thorac Oncol 11(10): 1793-1797, 2016. PMID: 27468936. DOI: 10.1016/j.jtho.2016.06.017
    OpenUrl
  37. ↵
    1. Punnoose EA,
    2. Atwal S,
    3. Liu W,
    4. Raja R,
    5. Fine BM,
    6. Hughes BG,
    7. Hicks RJ,
    8. Hampton GM,
    9. Amler LC,
    10. Pirzkall A,
    11. Lackner MR
    : Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: Association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 18(8): 2391-2401, 2012. PMID: 22492982. DOI: 10.1158/1078-0432.CCR-11-3148
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Hofman V,
    2. Bonnetaud C,
    3. Ilie MI,
    4. Vielh P,
    5. Vignaud JM,
    6. Flejou JF,
    7. Lantuejoul S,
    8. Piaton E,
    9. Mourad N,
    10. Butori C,
    11. Selva E,
    12. Poudenx M,
    13. Sibon S,
    14. Kelhef S,
    15. Venissac N,
    16. Jais JP,
    17. Mouroux J,
    18. Molina TJ,
    19. Hofman P
    : Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin Cancer Res 17(4): 827-835, 2011. PMID: 21098695. DOI: 10.1158/1078-0432.CCR-10-0445
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Bielcikova Z,
    2. Jakabova A,
    3. Pinkas M,
    4. Zemanova M,
    5. Kolostova K,
    6. Bobek V
    : Circulating tumor cells: What we know, what do we want to know about them and are they ready to be used in clinics? Am J Transl Res 9(6): 2807-2823, 2017. PMID: 28670371.
    OpenUrl
  40. ↵
    1. Tong B,
    2. Xu Y,
    3. Zhao J,
    4. Chen M,
    5. Xing J,
    6. Zhong W,
    7. Wang M
    : Prognostic significance of circulating tumor cells in non-small cell lung cancer patients undergoing chemotherapy. Oncotarget 8(49): 86615-86624, 2017. PMID: 29156821. DOI: 10.18632/oncotarget.21255
    OpenUrl
  41. ↵
    1. Del Ben F,
    2. Turetta M,
    3. Celetti G,
    4. Piruska A,
    5. Bulfoni M,
    6. Cesselli D,
    7. Huck WT,
    8. Scoles G
    : A method for detecting circulating tumor cells based on the measurement of single-cell metabolism in droplet-based microfluidics. Angew Chem Int Ed Engl 55(30): 8581-8584, 2016. PMID: 27247024. DOI: 10.1002/anie. 201602328
    OpenUrl
  42. ↵
    1. Turetta M,
    2. Bulfoni M,
    3. Brisotto G,
    4. Fasola G,
    5. Zanello A,
    6. Biscontin E,
    7. Mariuzzi L,
    8. Steffan A,
    9. Di Loreto C,
    10. Cesselli D,
    11. Del Ben F
    : Assessment of the mutational status of nsclc using hypermetabolic circulating tumor cells. Cancers (Basel) 10(8), 2018. PMID: 30110953. DOI: 10.3390/cancers10080270
  43. ↵
    1. Ilie M,
    2. Szafer-Glusman E,
    3. Hofman V,
    4. Long-Mira E,
    5. Suttmann R,
    6. Darbonne W,
    7. Butori C,
    8. Lalvee S,
    9. Fayada J,
    10. Selva E,
    11. Yu W,
    12. Marquette CH,
    13. Shames DS,
    14. Punnoose E,
    15. Hofman P
    : Expression of met in circulating tumor cells correlates with expression in tumor tissue from advanced-stage lung cancer patients. Oncotarget 8(16): 26112-26121, 2017. PMID: 28212 540. DOI: 10.18632/oncotarget.15345
    OpenUrl
  44. ↵
    1. Guibert N,
    2. Delaunay M,
    3. Lusque A,
    4. Boubekeur N,
    5. Rouquette I,
    6. Clermont E,
    7. Mourlanette J,
    8. Gouin S,
    9. Dormoy I,
    10. Favre G,
    11. Mazieres J,
    12. Pradines A
    : Pd-l1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer 120: 108-112, 2018. PMID: 29748004. DOI: 10.1016/j.lungcan.2018.04.001
    OpenUrl
  45. ↵
    1. Marchetti A,
    2. Del Grammastro M,
    3. Felicioni L,
    4. Malatesta S,
    5. Filice G,
    6. Centi I,
    7. De Pas T,
    8. Santoro A,
    9. Chella A,
    10. Brandes AA,
    11. Venturino P,
    12. Cuccurullo F,
    13. Crino L,
    14. Buttitta F
    : Assessment of egfr mutations in circulating tumor cell preparations from nsclc patients by next generation sequencing: Toward a real-time liquid biopsy for treatment. PLoS One 9(8): e103883, 2014. PMID: 25137181. DOI: 10.1371/journal.pone.0103883
    OpenUrlCrossRefPubMed
  46. ↵
    1. Zhang Z,
    2. Ramnath N,
    3. Nagrath S
    : Current status of ctcs as liquid biopsy in lung cancer and future directions. Front Oncol 5: 209, 2015. PMID: 26484313. DOI: 10.3389/fonc.2015.00209
    OpenUrl
    1. Collisson EA,
    2. Campbell JD,
    3. Brooks AN,
    4. Berger AH,
    5. Lee W,
    6. Chmielecki J,
    7. Beer DG
    : Comprehensive molecular profiling of lung adenocarcinoma. Nature 511(7511): 543-550, 2014. PMID: 25079552. DOI: 10.1038/nature13385
    OpenUrlCrossRefPubMed
  47. ↵
    1. Neil HD,
    2. Wilkerson MD,
    3. Schultz N,
    4. Bose R,
    5. Chu A,
    6. Collisson EA,
    7. Cope L
    : Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417): 519-525, 2012. PMID: 22960745. DOI: 10.1038/nature11404
    OpenUrlCrossRefPubMed
  48. ↵
    1. Faugeroux V,
    2. Pailler E,
    3. Auger N,
    4. Taylor M,
    5. Farace F
    : Clinical utility of circulating tumor cells in alk-positive non-small-cell lung cancer. Front Oncol 4: 281, 2014. PMID: 2541 4829. DOI: 10.3389/fonc.2014.00281
    OpenUrl
  49. ↵
    1. Demeulemeester J,
    2. Kumar P,
    3. Moller EK,
    4. Nord S,
    5. Wedge DC,
    6. Peterson A,
    7. Mathiesen RR,
    8. Fjelldal R,
    9. Zamani Esteki M,
    10. Theunis K,
    11. Fernandez Gallardo E,
    12. Grundstad AJ,
    13. Borgen E,
    14. Baumbusch LO,
    15. Borresen-Dale AL,
    16. White KP,
    17. Kristensen VN,
    18. Van Loo P,
    19. Voet T,
    20. Naume B
    : Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing. Genome Biol 17(1): 250, 2016. PMID: 27931250. DOI: 10.1186/s13059-016-1109-7
    OpenUrlCrossRefPubMed
  50. ↵
    1. Diaz LA Jr..,
    2. Bardelli A
    : Liquid biopsies: Genotyping circulating tumor DNA. J Clin Oncol 32(6): 579-586, 2014. PMID: 24449238. DOI: 10.1200/JCO.2012.45.2011
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Kolostova K,
    2. Spicka J,
    3. Matkowski R,
    4. Bobek V
    : Isolation, primary culture, morphological and molecular characterization of circulating tumor cells in gynecological cancers. Am J Transl Res 7(7): 1203-1213, 2015. PMID: 26328005.
    OpenUrl
  52. ↵
    1. Lu SH,
    2. Tsai WS,
    3. Chang YH,
    4. Chou TY,
    5. Pang ST,
    6. Lin PH,
    7. Tsai CM,
    8. Chang YC
    : Identifying cancer origin using circulating tumor cells. Cancer Biol Ther 17(4): 430-438, 2016. PMID: 26828696. DOI: 10.1080/15384047.2016.1141839
    OpenUrl
  53. ↵
    1. Reis-Filho JS,
    2. Carrilho C,
    3. Valenti C,
    4. Leitao D,
    5. Ribeiro CA,
    6. Ribeiro SG,
    7. Schmitt FC
    : Is ttf1 a good immunohistochemical marker to distinguish primary from metastatic lung adenocarcinomas? Pathol Res Pract 196(12): 835-840, 2000. PMID: 11156325. DOI: 10.1016/S0344-0338(00)80084-9
    OpenUrlCrossRefPubMed
  54. ↵
    1. Lianidou ES
    : Gene expression profiling and DNA methylation analyses of ctcs. Mol Oncol 10(3): 431-442, 2016. PMID: 26880168. DOI: 10.1016/j.molonc.2016.01.011
    OpenUrl
  55. ↵
    1. Miyamoto DT,
    2. Zheng Y,
    3. Wittner BS,
    4. Lee RJ,
    5. Zhu H,
    6. Broderick KT,
    7. Desai R,
    8. Fox DB,
    9. Brannigan BW,
    10. Trautwein J,
    11. Arora KS,
    12. Desai N,
    13. Dahl DM,
    14. Sequist LV,
    15. Smith MR,
    16. Kapur R,
    17. Wu CL,
    18. Shioda T,
    19. Ramaswamy S,
    20. Ting DT,
    21. Toner M,
    22. Maheswaran S,
    23. Haber DA
    : Rna-seq of single prostate ctcs implicates noncanonical wnt signaling in antiandrogen resistance. Science 349(6254): 1351-1356, 2015. PMID: 26383955. DOI: 10.1126/science.aab0917
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Ting DT,
    2. Wittner BS,
    3. Ligorio M,
    4. Vincent Jordan N,
    5. Shah AM,
    6. Miyamoto DT,
    7. Aceto N,
    8. Bersani F,
    9. Brannigan BW,
    10. Xega K,
    11. Ciciliano JC,
    12. Zhu H,
    13. MacKenzie OC,
    14. Trautwein J,
    15. Arora KS,
    16. Shahid M,
    17. Ellis HL,
    18. Qu N,
    19. Bardeesy N,
    20. Rivera MN,
    21. Deshpande V,
    22. Ferrone CR,
    23. Kapur R,
    24. Ramaswamy S,
    25. Shioda T,
    26. Toner M,
    27. Maheswaran S,
    28. Haber DA
    : Single-cell rna sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8(6): 1905-1918, 2014. PMID: 25242334. DOI: 10.1016/j.celrep.2014.08.029
    OpenUrlCrossRefPubMed
  57. ↵
    1. Yang M,
    2. Nelson R,
    3. Ros A
    : Toward analysis of proteins in single cells: A quantitative approach employing isobaric tags with maldi mass spectrometry realized with a microfluidic platform. Anal Chem 88(13): 6672-6679, 2016. PMID: 27257853. DOI: 10.1021/acs.analchem.5b03419
    OpenUrl
  58. ↵
    1. Sinkala E,
    2. Sollier-Christen E,
    3. Renier C,
    4. Rosas-Canyelles E,
    5. Che J,
    6. Heirich K,
    7. Duncombe TA,
    8. Vlassakis J,
    9. Yamauchi KA,
    10. Huang H,
    11. Jeffrey SS,
    12. Herr AE
    : Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun 8: 14622, 2017. PMID: 28332571. DOI: 10.1038/ncomms14622
    OpenUrl
  59. ↵
    1. Cabel L,
    2. Proudhon C,
    3. Gortais H,
    4. Loirat D,
    5. Coussy F,
    6. Pierga JY,
    7. Bidard FC
    : Circulating tumor cells: Clinical validity and utility. Int J Clin Oncol 22(3): 421-430, 2017. PMID: 28238187. DOI: 10.1007/s10147-017-1105-2
    OpenUrl
  60. ↵
    1. Allard WJ,
    2. Matera J,
    3. Miller MC,
    4. Repollet M,
    5. Connelly MC,
    6. Rao C,
    7. Tibbe AG,
    8. Uhr JW,
    9. Terstappen LW
    : Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20): 6897-6904, 2004. PMID: 15501967. DOI: 10.1158/1078-0432.CCR-04-0378
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Pantel K,
    2. Deneve E,
    3. Nocca D,
    4. Coffy A,
    5. Vendrell JP,
    6. Maudelonde T,
    7. Riethdorf S,
    8. Alix-Panabieres C
    : Circulating epithelial cells in patients with benign colon diseases. Clin Chem 58(5): 936-940, 2012. PMID: 22205690. DOI: 10.1373/clinchem. 2011.17 5570
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Bobek V,
    2. Kolostova K,
    3. Kucera E
    : Circulating endometrial cells in peripheral blood. Eur J Obstet Gynecol Reprod Biol 181: 267-274, 2014. PMID: 25195200. DOI: 10.1016/j.ejogrb. 2014.07.037
    OpenUrlCrossRefPubMed
  63. ↵
    1. Kuessel L,
    2. Kasimir-Bauer S,
    3. Zeillinger R,
    4. Pateisky P,
    5. Ott J,
    6. Zeisler H,
    7. Birdir C
    : Detection of circulating trophoblast particles in maternal blood using density gradient centrifugation in preeclampsia and in normotensive pregnancies. Hypertens Pregnancy 35(3): 323-329, 2016. PMID: 26930176. DOI: 10.3109/10641955.2016.1143487
    OpenUrl
  64. ↵
    1. Castro J,
    2. Sanchez L,
    3. Nunez MT,
    4. Lu M,
    5. Castro T,
    6. Sharifi HR,
    7. Ericsson C
    : Screening circulating tumor cells as a noninvasive cancer test in 3388 individuals from high-risk groups (ICELLATE2). Dis Markers 2018: 4653109, 2018. PMID: 29997714. DOI: 10.1155/2018/4653109
    OpenUrl
  65. ↵
    1. He Y,
    2. Shi J,
    3. Shi G,
    4. Xu X,
    5. Liu Q,
    6. Liu C,
    7. Gao Z,
    8. Bai J,
    9. Shan B
    : Using the new cellcollector to capture circulating tumor cells from blood in different groups of pulmonary disease: A cohort study. Sci Rep 7(1): 9542, 2017. PMID: 28842574. DOI: 10.1038/s41598-017-09284-0
    OpenUrl
  66. ↵
    1. Ilie M,
    2. Hofman V,
    3. Long-Mira E,
    4. Selva E,
    5. Vignaud JM,
    6. Padovani B,
    7. Mouroux J,
    8. Marquette CH,
    9. Hofman P
    : “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One 9(10): e111597, 2014. PMID: 25360587. DOI: 10.1371/ journal.pone.0111597
    OpenUrlCrossRefPubMed
  67. ↵
    1. Lowe AC
    : Circulating tumor cells: Applications in cytopathology. Surg Pathol Clin 11(3): 679-686, 2018. PMID: 30190148. DOI: 10.1016/j.path.2018.04.008
    OpenUrl
View Abstract
PreviousNext
Back to top

In this issue

In Vivo
Vol. 33, Issue 4
July-August 2019
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on In Vivo.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer
(Your Name) has sent you a message from In Vivo
(Your Name) thought you would like to see the In Vivo web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer
VILEM MALY, ONDREJ MALY, KATARINA KOLOSTOVA, VLADIMIR BOBEK
In Vivo Jul 2019, 33 (4) 1027-1037; DOI: 10.21873/invivo.11571

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer
VILEM MALY, ONDREJ MALY, KATARINA KOLOSTOVA, VLADIMIR BOBEK
In Vivo Jul 2019, 33 (4) 1027-1037; DOI: 10.21873/invivo.11571
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • CTC Isolation and Detection Methods – Basic Principles
    • Levels of CTC Evaluation in NSCLC
    • Potential Clinical CTC Utilization
    • Conclusion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Genomic diversity and BCL9L mutational status in CTC pools predict overall survival in metastatic colorectal cancer
  • Circulating-tumor DNA Assessment in Diffuse Large B-cell Lymphoma to Determine Up-front Stem Cell Transplantation: A Pilot Study
  • A Novel System to Detect Circulating Tumor Cells Using Two Different Size-selective Microfilters
  • Circulating Tumor DNA in Biliary Tract Cancer: Current Evidence and Future Perspectives
  • Google Scholar

More in this TOC Section

  • Research Progress on the Microregulatory Mechanisms of Fertilization: A Review
  • Gastric Cancer Invading the Pancreas: A Review of the Role of Pancreatectomy
  • Circulating microRNAs and Clinicopathological Findings of Papillary Thyroid Cancer: A Systematic Review
Show more Reviews

Similar Articles

Keywords

  • Circulating tumor cells
  • culturing
  • lung cancer
  • biomarker
  • liquid biopsy
  • review
In Vivo

© 2025 In Vivo

Powered by HighWire