Abstract
The human insulin-like growth factor-1 (IGF-1) gene gives rise to multiple, heterogeneous mRNA transcripts through a combination of multiple transcription initiation sites, alternative splicing and different polyadenylation signals. These IGF-1 mRNA transcripts code different isoforms of the precursor peptide of IGF-1 (IGF-1Ea, IGF-1Eb and IGF-1Ec or MGF in human skeletal muscle), which also undergo post-translational modification. There is increasing interest in differential expression and implication of IGF-1 isoforms in the regulation of muscle fiber regeneration and hypertrophy following mechanical overloading and damage. The identification of a locally expressed, loading- or damage-sensitive IGF-1 isoform in skeletal muscle was one of the most attractive developments in the context of the autocrine/ paracrine actions of IGF-1. The concept that the competing processes of cellular proliferation and differentiation and the increased protein synthesis required for muscle repair or hypertrophic adaptation are regulated by a differential expression and by distinct roles of IGF-1 isoforms is discussed in the present review.
- IGF-1 isoforms
- differential expression
- autocrine/paracrine actions
- regeneration
- hypertrophy
- resistance exercise
- review
Footnotes
- Received October 26, 2006.
- Accepted December 4, 2006.
- Copyright © 2007 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved