
Abstract. The structure of the plasma membrane affects its
function. Changes in membrane fluidity with concomitant
effects on membrane protein activities and cellular
communication often accompany the transition from a
healthy to a diseased state. Although deliberate modulation
of membrane fluidity with drugs has not been exploited to
date, the latest data suggest the “druggability” of the
membrane. Azelaic acid esters (azelates) modulate plasma
membrane fluidity and exhibit a broad range of
immunomodulatory effects in vitro and in vivo. Azelates
represent a new class of drugs, membrane active
immunomodulators (MAIMs), which use the entire plasma
membrane as the target, altering the dynamics of an innate
feedback regulated homeostatic system, adaptive membrane
fluidity modulation (AMFM). A review of the literature data
spanning >200 years supports the notion that molecules in
the MAIMs category including known drugs do exert
immunomodulatory effects that have been either neglected
or dismissed as off-target effects.  

A literature search was conducted using PUBMED,
MEDLINE, and Library of Congress databases to capture
peer-reviewed research articles (including reviews and meta-
analyses), published through August 27, 2021, with the

earliest record dating from 1801. The search terms included
“plasma membrane” AND “fluidity” OR “plasticity” OR
“rigidity”. Secondary searches combined keywords
consisting of individual chemical entities listed in this
manuscript (for example, cholesterol, ethanol, turpentine)
and physiological conditions (for example pain, fever,
disease). The collected abstracts and/or full papers were
surveyed by both authors in order to confirm article
relevancy to the topic.  

Plasma Membrane at the Crossroads 
of Communication in Health and Disease

The plasma membrane of eukaryotic cells plays an active
role in the flow of information between cells and their
environment (1, 2).  Variations in the composition of
membrane lipids affect the membrane fluidity and membrane
environment has an impact on integral and membrane-
associated proteins with consequences for the entire
organism (3-6).  In transition from a healthy to a diseased
state, cellular plasma membranes usually become more rigid
(5, 7, 8) mainly due to incorporation of cholesterol (9) that
is dynamically exchanged between the blood and plasma
membranes (9, 10). High blood cholesterol correlates with
various diseases (11-14) while positive health effects can be
achieved upon lowering cholesterol content of the plasma
membrane (15-17). 

Structural changes in cellular plasma membranes have
been mainly focused on the role of membrane structural
integrity “in sickness and health” (18, 19), although
membrane domains were also proposed as possible drug
targets (20). Intentional pharmacological tuning of
membrane fluidity with drugs has received little attention but
on closer examination there is a significant amount of data
suggesting the “druggability” of the fluidity of cell
membranes. The hypothesis that one can affect the activities
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of membrane-associated proteins through alterations in
plasma membrane fluidity using lipid-soluble molecules with
application in the treatment of human and animal diseases is
supported by our experimental data on the effects of esters
of azelaic acid (azelates) that act as membrane fluidizers and
exert immunomodulatory effects in vitro and in vivo (1, 21-
23). Unlike targeted therapies that usually focus on single
molecular entities, the target for azelates is the entire plasma
membrane. Azelates have been recognized as the first
representatives of a novel class of drugs, membrane active
immunomodulators (MAIMs) (1).

MAIMs and Adaptive Membrane 
Fluidity Modulation (AMFM)

This concept built upon experimental data has been
described elsewhere (1) and is briefly summarized below. We
postulated that MAIMs change plasma membrane fluidity
and that membrane fluidity is homeostatically controlled via
an innate feedback mechanism, Adaptive Membrane Fluidity
Modulation (AMFM), an active process of plasma membrane
fluidity regulation in mammalian cells. Our AMFM
hypothesis expands and extends the historical concept of
homeoviscous adaptation (24) and proposes a mechanism
directed to the regulation of biochemical processes driven by
the physiological modulation of plasma membrane fluidity.  

The temperature of the human body, and those of all
warm-blooded animals outside of hibernation, is regulated in
a narrow temperature range. For humans the normal body
temperature is around 36.6˚C. Body temperature varies in
pathologic states between 35˚C (hypothermia) and high fever
at around 42˚C. We propose that body temperature control is
essential to maintaining cellular plasma membrane fluidity
and thus membrane protein function. What, one must ask, is
the “purpose” of fever. That is to say, what survival
advantage does the ability to mount a fever confer? Most
pathogens are unaffected by the modest temperatures
attained in human fever despite superstitious beliefs that
fever was somehow involved in killing them. We propose
that fever may be directed to regulating inflammatory
mediator trafficking. Everyone who has had a fever has also
had the experience of the fever” breaking” with subsequent
resolution of the hyperthermic state and improvement in
subjective feelings of wellbeing. The AMFM hypothesis
sheds a new light on these innate processes, on targeted
therapies and receptor-directed mechanisms of action of
hormones, drugs and toxins (1).   

MAIMs Hiding in Plain Sight

A review of the biomedical literature related to the
modulation of plasma membrane published over the past two
hundred years has led us to the conclusion that many known

drugs, natural products, and synthetic molecules have
membrane fluidity modulating properties and can be viewed,
at least in part, as MAIMs. The biochemical effects of these
MAIMs have been well documented in the medical literature
but the underlying AMFM system on which they exert their
effects has remained largely unappreciated. We have grouped
these molecules into three broad categories: drugs, natural
products, and synthetic molecules. We further discuss
representative molecules in each category in the light of their
membrane modulatory activities.

There are numerous examples of drugs, many of them
derived from natural sources, that are also MAIMs. For
example, the fatty acid azelaic acid has been used in the
treatment of dermatological diseases for decades (25, 26).
Diethyl azelate, a natural product made by plants and
animals and unwittingly used by humanity over many
millennia (27-34), is also a promising drug candidate (21).  

Tecfidera (dimethyl fumarate) was first used in the
treatment of psoriasis and has been repurposed for the
treatment of multiple sclerosis (35) but its mechanism of
action of remains unclear. Dimethyl fumarate is known to
have immunomodulatory properties (36) and most of the
affected targets have antioxidant and/or anti-inflammatory
functions (37). Tecfidera is used in the clinic at doses of
hundreds of milligrams per day. In addition, the drug is an
allergic sensitizer at low picomolar levels (38).  

Ethanol is natural product and also a drug. Human
consumption of ethanol rendered from wheat in the form of
beer dates back at least 10,000 years (39). The date that
humans recognized the pharmacological effects of ethanol
intake is lost to history. The medical community has reported
on its effects starting as early as 1805 and continuing
through the present day (40-42). Ethanol has no known
receptor, is a membrane fluidizer at low doses (43) and
displays a non-monotonic effect on lipid chain order in a
striking contrast to methanol (44, 45). Ethanol is known to
modulate the activity of GABA A receptors, glycine
receptors and two pore potassium channels (46).  

The organosulfur compound dimethyl sulfoxide (DMSO)
enhances the cell membrane penetration of drugs or DNA
and enhances percutaneous absorption when used in
combination with other substances. In vitro data supported
by molecular dynamics simulations suggest that increasing
concentrations of DMSO induce membrane undulation and
thinning, followed by pore formation and eventually bilayer
collapse (47). DMSO can also provide a rapid albeit
temporary relief of arthritic pain (48) and has some utility in
wound healing (49). 

General anesthetics such as isoflurane, propofol,
phencyclidine, and noble gases (Xe, He) also lack known
receptors and behave in a manner similar to ethanol (37, 44,
50-52). Ether, the oldest general anesthetic, was first reported
in 1851 to induce glucosuria (53). It was thought at the time
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that the nervous system or emotional factors were
responsible for these observations (54). Plasma membrane
involvement was highlighted by a report on the effect of
isoflurane on vesicle exocytosis and calcium channels (55).
Direct demonstration of targeting of plasma membrane lipids
by inhalational of anesthetics led to the proposal of a
mechanism that involves disruption of lipid rafts (56).  

Antibiotics, such as tetracyclines, cross the plasma
membrane and their activity is related to transmembrane flux
(57). Tetracyclines are also known to act by interfering with
protein synthesis at the ribosome by inhibiting attachment of
the aminoacyl-tRNA to the A site. Thus, tetracycline mode
of action encompasses a defined protein target and a
membrane modulatory mechanism. The anticonvulsant,
phenytoin, causes voltage-dependent block of voltage gated
sodium channels (58). Hexamethylene bisacetamide, a
differentiating agent, is an amphipathic molecule that
perturbs membrane-protein interactions and segregates lipids
in discrete domains (59).  

Decamethonium bromide, a muscle relaxant, is a
membrane depolarizer (60) that interacts with plasma
membrane components through hydrophobic interactions,
Van der Waals forces, and ion pairing. Phospholipid drugs
exemplified by miltefosine, edelfisone, and perifosine
displace proton pump protein from lipid rafts and alter
cholesterol trafficking (61-63). 

The activities of many drugs can be accounted for more
fully by inclusion of both target/receptor mediated activity
and MAIM activity. For example, the histone deacetylase
inhibitors suberoylanilide hydroxamic acid and valproic acid
affect expression of plasma membrane receptors and also
display membrane disordering activity (45, 64). 

Aspirin, a pharmacological Swiss army knife, exerts a wide
range of effects ranging from analgesic, antipyretic and anti-
inflammatory activities, cardiovascular benefits, to cancer
prevention (65). According to the commonly accepted
mechanism of action, aspirin inhibits cyclooxygenase (66). A
small human study using high doses of aspirin reportedly
improved glucose tolerance and lowered insulin resistance and
the clinical activity of aspirin was explained in terms of
specific inhibition of the serine/threonine kinase cascade (67).
Yet proposed mechanisms of action do not convincingly
explain the breadth of known effects of aspirin. Since aspirin
increases plasma membrane fluidity and prevents formation of
lipid rafts through non-specific interactions with lipid
membranes (68), we propose that aspirin functions as a MAIM
and thus shares similar features with diethyl azelate (DEA). An
immunomodulatory activity of aspirin was postulated in the
past (69) but the concept has not gained much attention.    

The second category of MAIMs encompasses natural
products, many of which are used as drugs. Our observations
of the immunomodulatory activities of azelates are echoed
in the biological activities of some natural products.

Polyunsaturated fatty acids such as omega-3 and omega-6
fatty acids affect membrane fluidity when incorporated into
phospholipids (70). Direct binding of omega-3 fatty acids to
the cellular receptor FFA4 changes calcium influx across the
plasma membrane (71). Trans fatty acids incorporate into
lipid rafts and can induce tumor growth in some cases (72).
Medical uses of turpentine oil composed of terpenes obtained
by the distillation of pine resin were reported in the early
19th century (73, 74). Terpenes are also known to transiently
affect cellular signaling (75).  

Carotenoid pigments increase plasma membrane rigidity in
Staphylococcus aureus (76). Exogenous carotenoids have
beneficial effects in human disease prevention (77). Most polar
carotenoids span the lipid bilayer, rigidify the membranes and
limit oxygen penetration to the hydrophobic membrane core
susceptible to oxidative degradation (78). Natural polyphenols
produced in plants as secondary metabolites, are a large part of
the human diet (79) and have pharmacological properties that
include anti-coronavirus and immunomodulatory activities (80).
The most abundant polyphenols such as flavonoids inhibit
plasma membrane ATPase and maintain ion cellular
homeostasis (81). A review of plant-derived immunomodulators
with immunosuppressive properties was focused on their
potential to calm the cytokine storm (82), presumably due to
membrane interactions. For example, luteolin intercalates within
cell membranes leading to their disruption (83). Resveratrol, a
natural phenol, apparently targets the entire cell membrane and
affects the intramembrane ion transport (84). Curcumin, another
well-known polyphenol, has membrane-thinning properties
(85), decreases membrane rigidity but drastically stiffens the
bilayers in model membranes with high cholesterol content
(86). Curcumin modulates the function and expression of
structurally and functionally unrelated membrane proteins (87). 

The third category of MAIMs is represented by amphiphilic
synthetic molecules that often contain halogens. Organic
halogen compounds are a large class of chemicals that contain
one or more halogens (fluorine, chlorine, bromine, or iodine)
combined with carbon and other elements. Notorious
polyfluorinated compounds such as perfluorooctane sulfonate
(PFOS) and perfluorooctanoic acid (PFOA) are persistent in
the environment and have been shown to cause membrane
disruption and oxidative damage in model systems (88). Some
halogenated organics are endocrine disruptors that can
interfere with endocrine systems (89). Most toxicants,
including endocrine disruptors, have a U-shaped dose response
curve. This type of dose response, known as hormesis (90),
defies the toxicological dogma of "the dose makes the
poison". For example, endocrine disruptors can have effects
at low doses that are not predicted by effects at higher doses
(91). There are important toxicological implications of the
AMFM hypothesis. The endocrine disruptors are biologically
persistent due to their poor metabolism and slow elimination.
They are associated with diseases characterized by
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derangement of innate and adaptive immunity in those
primarily exposed and their offspring (92). The environmental
impact of these “bad MAIMs”, or shall we say, “forever
MAIMs,” is underappreciated. As the list is very long, we will
highlight just a few notorious examples. 

The fungicide vinclozolin binds to membrane androgen
receptor (93). Organophosphate pesticides have been shown
to decrease erythrocyte membrane fluidity (94). Dioxins (e.g.,
Agent Orange) contain 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) that alters plasma membrane function (95). In fact,
dioxin insult may induce azelate levels (28), an effect that can
be viewed as a chemoprotective response of endogenously
produced azelate. The industrial surfactant perfluorooctanoic
acid is present in many household products including stain-
resistant carpets, microwave popcorn bags, and dental floss.
Perfluorooctanoic acid causes irreversible plasma membrane
injury in acute exposure (96), is present in the blood of 98%
of the US population, and is linked to increased cancer rates
(97). Commonly used bisphenol plasticizers alter calcium
cellular entry in a non-monotonic manner (98). Bisphenol A
acts as a selective estrogen receptor modulator and initiates
rapid responses via estrogen receptors presumably associated
with the plasma membrane (99). Most humans are exposed
to phthalate plasticizers with adverse effects on human
reproduction (100). Dimethyl phthalate has been shown to
directly damage bacterial cell walls (101). 

Physiological Support for the AMFM Hypothesis

The AMFM hypothesis is supported by a wealth of
observations of physiological processes. Fever is probably the
most obvious case. The role of fever was queried in 1805
(102) and a report on the effect of acute fever on glycosuria
appeared in 1885 (103). The peri-ovulation body temperature
spike is well known (104) but its mechanism, and purpose, is
not well understood though the fact that fertilization involves
the fusion of the sperm with the egg suggests the possibility
that the temperature spike may facilitate the process. It is not
surprising that elevated temperature increases membrane
fluidity thus when body temperature increases during a high
fever, the fluidity of cell plasma membranes also increases.
As a result, proteins and other membrane components
become more mobile within and through the membrane.  

The role of fever in higher organisms is thought to disfavor
pathogen survival in hosts as diverse as locusts, snails, finches,
iguanas, rabbits and humans (105, 106). Colloquially, many
laymen and even numerous scientists and physicians labor
under the tragically flawed idea that the purpose of fever is to
kill pathogens. However, a growing body of evidence supports
the idea that fever confers a survival advantage in the form of
disease tolerance to host animals. 

Additional illustration of the AMFM action include
fluctuations of blood glucose, insulin, and lipids under

normal physiological conditions or in the response to
infections or drugs. Examples include increased triglyceride
levels and insulin resistance in pregnancy (107, 108), high
triglyceride levels associated with multiple diseases (109),
and diabetogenic effects of statin therapy (110). The
association of obesity with dyslipidemia and insulin
resistance is well documented (111, 112) but a less known
consequence of obesity may be hampering immune
responses to SARS-CoV-2 vaccine (113).  

A recent report on cholesterol metabolites that facilitate
innate immunity to bacterial infections by mobilizing cell
surface accessible cholesterol sheds a new light on the
feedback loop involving a signal-mediated membrane
remodeling pathway (114). The implications of this finding
go far beyond the cellular response to bacterial pathogens.
Cholesterol has also been shown to affect the function of
some G protein–coupled receptors (GPCRs) (115), the
largest family of integral membrane proteins involved in
cellular signal transduction. A molecular sensor for
cholesterol in a human GPCR has recently been identified
(116) supporting the notion of a direct relationship between
membrane lipids, proteins, and cellular signaling.       

Since anesthesia directly affects plasma membrane
fluidity, it is quite interesting that anesthesia by itself or in
association with surgical procedures can lead to rapid
adaptive changes in blood glucose, insulin, and lipids.  In
rodents, plasma glucose and insulin increase in response to
anesthesia in the absence of surgical stress (117). In human
studies, hyperinsulinemic and normoglycemic clamp after
heart surgery caused elevation of blood lipids (118). Short-
term propofol anesthesia significantly raised triglyceride
levels in pediatric patients (119). Elevated risk for
perioperative hyperglycemia observed in non-diabetic
subjects but not in diabetic patients (120) was referred to as
paradoxical. For us the effect is akin to improved control of
glucose by DEA in subjects with higher levels of
hemoglobin A1c (21).     

“Forever MAIMs” also affect lipid and glucose levels.
Exposure to perfluoroalkyl substances PFOAs increases the
risk for insulin resistance and type 2 diabetes, and disrupts
lipid and weight regulation (121, 122). Dioxins such as TCCD
alter lipid metabolism in rodents (123). Human epidemiologic
studies suggested elevated risk of type 2 diabetes and an
increase of its hallmark, insulin resistance (124).  

Other supportive evidence comes from documented effects
of diet on human health. Increased incidence of diabetes,
heart disease and cancer are associated with excessive
ethanol intake, while health benefits of Asian diet with
fermented soy, Mediterranean diet with wine and olive oil,
and other dietary fats such as fish and vegetable oils are
widely acknowledged. Observations on the efficacy of olive
oil for preventing and curing the plague were reported in
1801 (125). 
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It Ιs About Time. The First 
Minutes of MAIMs Action

As presented above, physiological effects of MAIMs on
cellular signaling through the adaptive feedback response in
the form of transcriptional, translational and post-translational
events happen on the time scale of hours to days. In contrast,
local membrane effects of MAIMs translate to acute systemic
responses that can be observed within minutes.  

Inhalational anesthetics exert their effects in less than 5
min (126). For orally administered MAIMs, either drugs or
foods, the timing can be equally short. Low nanomolar doses
of nitroglycerin cause immediate decrease in the mean
diastolic blood pressure in rats, and a single sublingual dose
of nitroglycerin affects hemodynamic parameters in humans
in 2-5 min (127). The effects are consistent with rapid
absorption of nitrates from mucous membranes, the
gastrointestinal tract, and the skin (128). Regional effects of
ethanol intoxication manifested as cerebral blood flow
effects are observed in 5 min (129). DMSO applied topically
quickly causes a distinctive garlic taste on the tongue that is
indicative of a speedy transport through skin and mucosa
(130). Resveratrol which apparently uses the entire
membrane as the target (84), used in a lozenge formulation
for oral transmucosal delivery reached maximum plasma
concentration in 15 min (131). Significant changes in flow-
mediated dilation are seen in 30 minutes of grape polyphenol
supplementation (132). Given that it takes blood 20 seconds
to circulate through the whole body (133), a single dose of
an oral MAIM can rapidly achieve systemic effects. 

Concluding Remarks

The AMFM hypothesis does not account for the receptor or
molecular target mediated activities of these compounds but
it provides insight to the source of those activities that are
not accounted for by receptor or specific target effects. Our
understanding of the AMFM system opens the door to
developing novel treatments for diseases including diabetes,
cardiovascular, infectious and autoimmune diseases, stroke,
cancer, biodefense indications and many others. AMFM is
likely to be a valuable addition and/or complement to the
current targeted therapies and receptor-directed mechanisms
of action of hormones, drugs and toxins. 
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