
Abstract. Background/Aim: The cause of fatal
neuromuscular amyotrophic lateral sclerosis (ALS) is not
known. Materials and Methods: Ninety-day-old superoxide-
dismutase-1G93A (SOD1G93A) mice demonstrating level 1
paralysis, received 9.0 Gy total body irradiation (TBI) from
a cesium source at 340 cGy per minute, and intravenous
transplantation with 1×106 C57BL/6 green fluorescent
protein (GFP)+ donor bone marrow cells. Results:
Paralysis-free survival was prolonged in TBI and bone
marrow-transplanted SOD1G93A mice from 100 to over 250
days (p=0.0018). Other mice transplanted with SOD1G93A
marrow or marrow treated with the free-radical scavenger
MMS350 showed no therapeutic effect. GFP+ macrophage-
2 (M2) microglial cells of bone marrow origin, were seen
at sites of degenerating anterior horn motor neurons.
SOD1G93A mice had a disruption in the blood–brain
barrier permeability which was reversed by marrow
transplant from C57BL/6 mice. SOD1G93A marrow showed
unexpected robust hematopoiesis in vitro, and
radioresistance. Conclusion: After TBI, M2 microglial cells
from transplanted donor marrow extended the paralysis-
free interval in SOD1G93A mice. 

Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular
disease caused by progressive neurodegeneration of the
motor neurons in the brain and spinal cord (1, 2). While the
cause of ALS is unknown, 10-15% of patients have a
familial history of disease (3-7), while 85-90% develop the
disease sporadically. There are nearly 40 genetic mutations
associated with ALS, the second most common of which is
a mutation in the superoxide dismutase-1 (SOD1) gene (3-
30). The SOD1G93A mouse model phenotypically
recapitulates ALS in human patients and exhibits progressive
muscle wasting, paralysis, and death (18-25). Existing
therapeutic interventions only modestly extend the lifespan
of patients with ALS. Recently, approved antioxidant
therapies are believed to slow disease progression.
Experimental therapeutic strategies, including administration
of antioxidant drugs, biological response modifiers, cytokine
inhibitors, cytokine receptor antagonists, and introduction
into the spinal cord of neurotrophic growth factors or
mesenchymal stem cells engineered to produce
neuroleukines (31-46), have met with incomplete success (2,
32). Marrow transplant strategies, which were designed to
target specific defects (47-56), have been either ineffective
or of limited success in ALS (51, 52).

The histopathology of ALS-affected spinal cord
demonstrates gliosis, including the accumulation of both
inflammatory macrophage-1 (M1) and neurotrophic factor-
producing (M2) microglia at the site of neurodegeneration
(8). However, the pathophysiology of homing of these cells
to the site of motor neurons, and their mechanism of action
is not known (8-13, 15, 19-22). Furthermore, the origin of
microglial cells in the thoracolumbar spinal cord, where ALS
typically begins the process of ascending muscle functional
loss is not known. A summary of recent research suggests
that microglial cell accumulation at the site of degenerating

675

This article is freely accessible online.

Correspondence to: Joel S. Greenberger, MD, Professor and
Chairman, Department of Radiation Oncology, UPMC Hillman
Cancer Center, UPMC Cancer Pavilion, Rm. 533, 5150 Centre
Avenue, Pittsburgh, PA 15232, U.S.A. Tel: +1 4126473602, Fax: +1
4126476029, e-mail: greenbergerjs@upmc.edu 

Key Words: Total body irradiation, ALS, marrow origin, spinal cord
M2 cells.

in vivo 33: 675-688 (2019)
doi:10.21873/invivo.11526

Amelioration of Amyotrophic Lateral Sclerosis in SOD1G93A

Mice by M2 Microglia from Transplanted Marrow
MICHAEL W. EPPERLY1, RENEE FISHER1, LORA RIGATTI2, SIMON WATKINS3, XICHEN ZHANG1, WEN HOU1,

DONNA SHIELDS1, DARCY FRANICOLA1, HULYA BAYIR4, HONG WANG1, STEPHANIE THERMOZIER1,
ANDREW HENDERSON1, CHRISTOPHER DONNELLY5, PETER WIPF6 and JOEL S. GREENBERGER1

1Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.;
2Division of Laboratory Animal Resources (DLAR), University of Pittsburgh, Pittsburgh, PA, U.S.A.;

3Department of Cell Biology and Center for Images, University of Pittsburgh, Pittsburgh, PA, U.S.A.;
4Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A.;

5Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, U.S.A.;
6Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.



neurons represents multiple phases in the degenerative
process, one inflammatory potentially initiating the disease
process (28), and a second response to degenerating neurons
with a production of repair-related cytokines (9, 10). There
remains controversy over the interaction of glial cells with
motor neurons in the development of paralysis (57, 58).

In the present studies, we tested the hypothesis whether
cells of donor bone marrow origin might provide a
therapeutic effect if delivered to SOD1G93A mice after total
body irradiation (TBI).

Materials and Methods
Mice and animal care. SOD1G93A and control SOD1 transgenic
mice containing 4 copies of normal human SOD1 gene were
obtained from the Jackson Laboratories, Bar Harbor, Maine.
SOD1G93A-green fluorescent protein (GFP+) mice were bred
according to published methods used to breed SMAD family
member 3 (Smad3)−/− Fanconi anemia group D2 (Fancd2)−/− mice
(59). Mice were derived from breeding pairs of SOD1G93A and
control mice. Female mice were housed at five mice per cage and
male mice four per cage according to institutional regulations. Mice
were fed standard Purina laboratory chow. All work was performed
under protocol 18022000, approved by the University of Pittsburgh
Institutional Care and Use Committee. Veterinary care was provided
by the Division of Laboratory Animal Resources at the University
of Pittsburgh. 

Paralysis was scored as described by Hatzipetros et al. (26). Mice
were euthanized when reaching paralysis with neurological score
(NS) of 3. At NS 3, the mice still have complete use of their front
legs but show paralysis in the rear leg. Mice with NS 1 have no
paralysis but exhibit some trembling in the rear legs and a
collapsing of the rear legs toward the lateral mid line when picked
up. NS 2 paralysis reflects the beginning of paralysis in the rear legs
with a complete collapse of the rear legs to the lateral midline when
picked up; mice begin to show an altered gait but are still able to
move easily around in the cage. 

Mice were given no irradiation, 9 Gy, or 7.0 Gy TBI using a
Shephard Mark I 137Cs γ-ray source (J. L. Shepherd, San Fernando,
CA, USA), according to published methods (59). Other mice
received 9 Gy cranial spinal irradiation. Subgroups were given 106
cells from B6 GFP+ or wild-type B6 mouse marrow intravenously
after fractionated TBI, as described elsewhere (60).

TBI and craniospinal irradiation. Female and male mice received
9.0 Gy TBI from a cesium source at 340 cGy/min using a Shephard
Mark 1 irradiator (J.L. Shepherd, San Fernando, Ca, USA). Bone
marrow was isolated from C57BL/6 GFP+ mice (Jackson
Laboratories, Bar Harbor, ME, USA). The irradiated SOD1G93A
mice were injected intravenously with 1×106 C57BL/6 GFP+ donor
bone marrow cells. Chimerism was determined from the presence
of GFP+ cells in peripheral blood according to (60). The mice were
followed for the development of NS 3 paralysis at which time they
were sacrificed and the spinal cord was isolated and fixed in 2%
paraformaldehyde (PFA). Some of the spinal cords were analyzed
by single photon, confocal, ribbon-scanning microscopy for
quantitation of bone marrow origin cells. Other spinal cords were
fixed in 2% PFA, sectioned, and stained for M1 and M2 microglial
cells. 

Control C57BL/6NTac mice were transplanted at the same age with
SOD1G93A ALS bone marrow under the same conditions and followed
for development of paralysis. To determine if spinal cord irradiation
alone without bone marrow transplantation altered the development of
paralysis, SOD1G93A mice were irradiated with 9.0 Gy to the spinal
cord and brain while shielding the remainder of the body. All mice
were followed for the development of paralysis. In a separate group
of SOD1G93A mice, marrow transplant using B6 GFP+ or SOD1G93A
GFP+ 1×106 bone marrow cells was performed at 24 h after TBI.

To determine if TBI alone delay paralysis, SOD1G93A mice were
irradiated to 7.0 Gy TBI without bone marrow transplantation. Mice
were followed for development of paralysis. 

Treatment with MMS350. The water-soluble radiation mitigator
MMS350 was produced in the laboratory of Dr. Peter Wpif at the
University of Pittsburgh, Pittsburgh, PA, USA and was administered
at 400 mg/ml to mice in drinking water as described (61, 62) over
days 60 until death from paralysis.

Continuous bone marrow culture. Long-term bone marrow cultures
(LTBMCs) were established from the femur and tibia marrow of
SOD1G93A or control transgenic mice, as described previously (63).
The contents of a femur and tibia (N=6/genotype) were flushed into
McCoy’s 5A medium (Gibco, Gaithersburg, MD, USA)
supplemented with 25% horse serum (Cambrex, Rockland, ME,
USA) and 10−5 M hydrocortisone sodium hemisuccinate. Cultures
were incubated at 33˚C in 7% CO2. After 4 weeks, horse serum was
replaced with 25% fetal bovine serum (FBS) (Gibco, Gaithersburg,
MD, USA) (63). The cultures were observed weekly for
hematopoietic cell production and cobblestone island formation. The
number of cobblestone islands of 50 cells or more were scored
weekly in each flask (63-64). A two-sided two-sample t-test was
used to compare the number of cobblestone islands between culture
groups each week. p-Values less than 0.05 were regarded as
significant. 

The cultures were observed weekly for hematopoietic cell
production and adherent cell layer confluence. Non-adherent cell
production data were expressed as the mean±standard error standard
error of the mean (SEM) of weekly non-adherent cell number and
cumulative non-adherent cell production. Confluence data were
expressed as the mean±SEM of the percentage adherent cell layer
confluence. 

Establishment of clonal bone marrow stromal cell lines. Adherent
cell layers from one 4-week-old LTBMC from SOD1G93A (63-64)
and control mice were trypsinized and expanded by passage into
Dulbecco’s Modified Eagle’s Medium (DMEM) with10% FBS to
establish bone marrow stromal cell lines according to published
methods (63). Cells were passaged for 10 weeks to establish cell
lines. Culture were incubated at 37˚C in 5% CO2. 

Hematopoietic colony-forming cell lines and fresh marrow colony
assays. Each week after explant and establishment of LTBMCs,
1×105 nonadherent cells were plated in triplicate in methylcellulose-
containing medium, as previously published (63). Cells were
incubated at 37˚C in 5% CO2. At day 7 after plating, colonies of
≥50 cells were counted. The plates scored at day 7 were returned to
the incubator for scoring at day 14. Data for days 7 and 14 are
presented as the mean±SEM of weekly colony-forming cells and
cumulative colony-forming cells (63).
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Establishment of bone marrow stromal cell lines. Adherent cell layers
from one LTBMC per treatment group were trypsinized and expanded
by passage into DMEM supplemented with 10% FBS to establish
bone marrow stromal cell lines according to published methods (63).
Established criteria were used for authentication of cell lines (63).
Genotyping of all bone marrow stromal cell lines established they
were indeed from the SOD1G93A or control genotype. The established
lines maintained stromal cell features including capacity for osteoblast
differentiation, and support of hematopoietic cells in co-culture. We
documented cell surface phenotype, biology, and absence of capacity
to differentiate into hematopoietic cells. These cell lines were
characterized as bone marrow stromal cells or mesenchymal stem
cells (63). Cell lines were incubated at 37˚C in 5% CO2 and passaged
for 10 weeks to establish cell lines.

Establishment of single-cell-derived clonal marrow stromal cell lines.
Single-cell cloning experiments were performed using fresh marrow,
an adherent cell layer from a LTBMC at week 13 after explant, and
bone marrow stromal cell lines that were established as described
(63). Flow cytometry was used to sort single cells into the wells of a
96-well plate. Cells were grown in DMEM supplemented with 20%
FBS, 1% antibiotic-anti-mitotic solution, and 1% L-glutamine. Plates
were observed weekly for growth. Clonal lines were established from
wells that showed growth after single-cell plating. 

Histochemistry and ribbon scanning, confocal single-photon
microscopy. The detailed methods for the microscopy techniques of
the spinal cord have been published in the web-based textbook (65).

Microbead assay for blood–brain barrier permeability. Blood–brain
barrier permeability was analyzed by intravenous perfusion with 
0.2 μm Fluorospheres (F8810; Invitrogen) on day 125 in control
SOD1G93A mice, SOD1G93A mice transplanted on day 90 with
GFP+ C57BL6 bone marrow and C57BL/6 mice.

Immunofluorescence assay for detection of astrocytes, neurons, glial
cells, and immunocytes. Spinal cord was removed from control
C57BL/6 mice, and SOD1G93A mice with phase1, phase 2 and phase
3 paralysis. The spinal cords were fixed in 2% paraformaldehyde
(PFA; Thermo Fisher Scientific, Waltham, MA, USA), sectioned, and
stained with antibodies to astrocytes, neurons, glial cells and
immunocytes. The antibodies used, their vendor/supplier and cellular
target function are shown in Table I. Secondary antibodies used
include goat anti-rabbit and donkey anti-goat (Thermo Fisher
Scientific, Waltham, MA, USA). The antibodies specific for astrocytes,

motor neurons, M1 and M2 microglial cells, endothelial cells, and
hematopoietic cells have been described elsewhere (65). Cells were
incubated with primary antibody mixture overnight at 4˚C then washed
with PBS three times for 5 min each. Secondary antibody solution was
prepared at manufacturer-suggested dilutions in PBS and added to
cells for 1 hour at room temperature. After washing with PBS three
times for 5 min each, 0.5 μg/mI 4’,6-diamine-2’-phenylindole
dihydrochloride (DAPI; Millipore Sigma, St. Louis, MO, USA) in
PBS was added for 10-20 min at room temperature to label nuclei.
Cells were mounted and allowed to dry for 30 min. Pictures were
taken using fluorescence microscopes at the University of Pittsburgh
Center for Biologic Imaging. For each sample, three fields were
subjected to analysis. Data are presented as the mean±standard error
of the percentage of cells staining positively for the target protein.

Statistical analysis. For in vivo experiments, the mean and standard error
of the mean for each group was determined and graphed using
GraphPad Prism (GraphPad Software, LaJolla, CA, USA) to compare
experimental groups. Student’s unpaired t-test was used to compare data
of each group at different time points to those for the control group, as
well as to compare all days for each experimental group (including the
control) to day 0 (non-irradiated baseline) of the control group. 

For LTBMCs, GraphPad Prism (GraphPad Software) was used
for statistical analysis and plotting graphs. Graphs were plotted
using the mean±SEM. The data were analyzed using two-tailed
Student’s t-test. In this exploratory experiment, p-values were not
corrected for multiple comparisons. Differences were considered
significant at p<0.05 (27). At each week of LTBMC for each of the
endpoints (i.e. weekly non-adherent cells per flask, percent
confluence, day-7 colonies, and day-14 colonies), data were
summarized with mean±standard deviation. Comparisons were
made using the one-way analysis of variation (ANOVA) F-test at
each time point, followed by Tukey’s multiple comparisons.

The description of calculation of D0, which is the irradiation dose
required to reduce survival to 37% on the linear portion of the
survival curve, and ñ, which represents the shoulder on the survival
curve as calculated by the back extrapolation of the linear portion
of the survival curve to the y axis, for radiation survival curves has
been published in detail elsewhere (63).

Results

Establishment of bone marrow chimeric GFP+ SOD1G93A

mice. After marrow transplant, as described in the Materials
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Table I. Source of antibodies and target cell identifiers.

Primary antibody target                                                                      Known functions of target

Glial fibrillary acidic protein (Novus Biologics, NB300-141)        Intermediate filament expressed by numerous cell types in the central nervous 
                                                                                                             system including astrocytes and ependymal cells.
Allograft inflammatory factor 1 (Abcam, ab5076)                           Participates in membrane ruffling and phagocytosis in activated microglia.

Neurofilament heavy polypeptide (Abcam, ab8135)                        Provides structural support to axons and regulate axon diameter.
Neurotracer (ThermoFisher, N21482)                                               A fluorescent tracer that adheres to neurons
Oligo2 (Novus Biologics, NBP1-28667)                                           Oligodendrocyte transcription factor found in motor neurons and oligodendrocytes
Platelet endothelial cell adhesion molecule (Abcam, ab134168)       Involved in leukocyte transmigration, angiogenesis and integrin activation.



and Methods, blood samples were checked for chimerism at
day 60 and 90. Mice with over 80% donor origin GFP+ cells
were considered to be successfully transplanted.

Quantitation of TBI and bone marrow transplantation
delayed hind limb paralysis. TBI and marrow transplant
significantly delayed paralysis and extended survival of
SOD1G93A mice (Figure 1A). TBI plus normal marrow
transplant but not sub-TBI, reduced TBI dose, transplant of
SOD1G93A donor marrow nor administration of MMS350
prolonged the paralysis-free interval (p<0.0039) (Figure 1B). 

The stages of paralysis are shown histologically in Figure
2. Bone marrow-derived M2 microglia were found in the
spinal cords of SOD1G93A mice transplanted with GFP+
donor marrow at 120 days of age when other groups are
developing stage 3 paralysis (Figure 3). GFP+ cells were
seen throughout the spinal cord (Figure 4). The blood–brain
barrier was permeable to microbeads in non-irradiated and
non-transplanted SOD1G93A mice (Figure 5) confirming
findings of a prior publication (47). In contrast, TBI-treated,
then GFP+ marrow-transplanted mice showed correction of
the blood–brain barrier defect (Figure 5). Control wild-type
mice transplanted with SOD1G93A bone marrow
demonstrated no paralysis (Figure 1A). There was no
transfer of cells of SOD1G93A GFP+ donor bone marrow
origin to the spinal cord of wild-type recipients. The blood–
brain barrier was no longer disrupted in TBI-treated normal
marrow-transplanted SOD1G93A mice (Figure 5).

The results show that TBI and bone marrow transplantation
significantly extended the survival of SOD1G93A mice, and
was a robust neuroprotective and translatable strategy to
prevent motor neuron degeneration starting at the time of NS
1 paralysis in SOD1G93A mice (Figure 1).

Analysis of subsets of cells of bone marrow origin in spinal
cord of TBI-treated and bone marrow-transplanted
SOD1G93A mice. We identified microglia from GFP+ marrow
origin in the spinal cords of SOD1G93A TBI/marrow-
transplanted mice (Figures 3 and 4). We tested whether there
were GFP+ M2 microglial cells in the anterior horns of the
spinal cords at days 120, 200, and 280 in GFP+ marrow-
transplanted SOD1G93A mice (Figure 3). The spinal cord
showed significant infiltration with GFP+ cells of marrow
origin at multiple levels (Figures 3 and 4). We did not see
cells of marrow origin in the spinal cords of TBI-treated
wild-type C57BL/6 mice that were transplanted with GFP+
SOD1G93A marrow.

Demonstration of reversal of blood/brain barrier
permeability in SOD1G93A mice. SOD1G93A mice
demonstrated the blood–brain barrier was permeable to 2-μm
diameter beads (Figure 5), confirming previous findings (47).
In contrast, control C57BL/6 mice and C57BL/6 mice that
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Figure 1. Effect of total body irradiation (TBI) and bone marrow
transplantation (BMT) on paralysis-free interval. Superoxide dismutase-1
(SOD1)G93A mice at 90 days after birth received total body irradiation to
9 Gy. A: Mice were injected intravenously with 1×106 freshly removed
tibia and femur bone marrow from C57BL/6-green fluorescent protein
(GFP)+ mice and followed for development of stage 3 paralysis at which
time the mice were sacrificed. Non-treated SOD1G93A mice had an
average survival of 129±3 days (n=5). In contrast, TBI-mice which
received bone marrow transplant had a significant increase in mean
survival to 233±23 days (p=0.0045) (n=6). Control wild-type C57BL/6
mice (n=10) were irradiated to 10 Gy and transplanted with bone marrow
from SOD1G93A mice and followed for development of paralysis. No
paralysis, as suggested in several recent publications (21-24) was detected
up to 280 days following transplantation (p=0.0018). B: Controls included
mice which received 9.0 Gy brain and spine irradiation (n=5), sub-lethal
TBI of 7.0 Gy alone (n=5), radiation mitigator MMS350 in drinking water
(n=4), or transplant of SOD1G93A marrow (n=4). The horizontal line for
each group represents the average age at the time of sacrifice.



had been transplanted with SOD1G93A marrow showed no
such detectable blood–brain barrier permeability (Figure 5).

Failure of isolated craniospinal irradiation and of sub-lethal
TBI with no marrow transplant to prolong the paralysis-free
interval in SOD1G93A mice. As shown in Figure 1B,

SOD1G93A mice treated with 9.25 Gy to the brain and spinal
cord only while shielding the rest of the body, and those
receiving 7.0 Gy TBI without marrow transplant showed no
therapeutic effect. Furthermore, SOD1G93A mice treated with
radiation mitigator MMS350 in drinking water starting at day
60 showed no therapeutic effect (Figure 1B).
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Figure 2. Histopathological stages of spinal cord motor neuron loss in superoxide dismutase-1 (SOD1)G93A mice (H&E ×20). With the advancement
of each stage, there was increased degeneration and loss of motor neurons, astrogliosis in the areas of motor neuron loss, and vacuolation within
the gray matter (n=3 at each stage). Lesions were more pronounced in the ventral horns (bar=100 μm).

Figure 3. Histochemical detection of M2 microglial cells of bone marrow origin in the spinal cord of superoxide dismutase-1 (SOD1)G93A mice. A:
Cross section of spinal cord at recipient age 120 days which is 30 days post irradiation and transplantation of green fluorescent protein (GFP)+
bone marrow cells (n=3). Labelling is glial fibrillary acidic protein (GFAP) (red), nuclei (blue), ionized calcium-binding adapter molecule 1 (white),
and stem cells (green). There is almost complete co-localization between the green cells of marrow origin and the white M2 microglia (×100). B
and C: Boxed inset region from A showing M2 microglia (B) overlaying exactly with the GFP-labeled cells (C), highlighted with yellow arrows.
Bar=500 μm (×500).



Hematopoiesis in LTBMCs from SOD1G93A mice. We tested
the effect of the SOD1G93A genotype on limiting the
duration of hematopoiesis in LTBMCs as a marker of
defective antioxidant capacity according to prior publications

(59, 61-64). Unexpectedly, SOD1G93A mouse marrow had
greater longevity than did that from SOD1 transgenic control
mice. Stability of the adherent layer was equivalent in
SOD1G93A and SOD1 transgenic control mice (Figure 6A).
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Figure 4. Rendered three-dimensional image of superoxide dismutase-1 (SOD1)G93A murine spinal cord following irradiation and transplantation of
green fluorescent protein (GFP)+ bone marrow cells. Images were collected following CUBIC clearing and imaging using a Caliber XT ribbon scanning
confocal microscope (25× 1.15 NA water objective, WD 2.4 mm) (n=3). A: En face reconstruction of the raw image. GFP+ cells can be seen throughout
the tissue, but are more concentrated in the lumbar region in the lateral nerve branches. B: The GFP+ cells in the same image set in which the positive
structures are highlighted as green spheres. C: The 3D nature of the reconstruction is clearly visible. Bar=1 cm. (Link to movie of Figure 4).

Figure 5. The blood–brain barrier is permeable in superoxide dismutase-1 (SOD1)G93A mice. A: Section though spinal cord of an ALS mouse (age
100 days) perfused with 0.2 μm Fluospheres (F8810, Invitrogen) shown in red (n=3). The actin cytoskeleton is green and blue defines the nuclei
(bar=250 μm). Beads are present throughout the soma of the spinal cord (Panel B). However, in TBI/transplanted mouse at 30 days post
transplantation (Panel C) no beads are present in the spinal cord.



Stem cell islands, cobblestones, were significantly greater in
number (Figure 6B). There was a significantly greater
production of total hematopoietic cells (Figure 6C), and
greater duration of production of total cell forming day 7
(Figure 6D) and day 14 (Figure 6E) colony-forming
progenitors (Supplemental Tables I-V may be found at
https://pitt.box.com/s/ajzj6ov2cw9ttrbnspnfz3p7d7so7mob).

Radiation resistance of clonal bone marrow stromal cell lines
from SOD1G93A mice. In prior studies, greater longevity of
hematopoiesis in LTBMCs correlated with radioresistance of
hematopoietic progenitors, suggesting a greater capacity of
cells to tolerate oxidative stress (63). The data revealed that
both SOD1G93A mouse isolated bone marrow CFU-GEM
(Figure 7A, Table II) and marrow culture-derived stromal cell
lines (Figure 7B, Table II) were radioresistant.

Number of motor neurons in thoracic and lumbar spinal cord
of SOD1G93A mice is reduced compared to controls. The
increased number of hematopoietic progenitor cells in
LTBMCs and radioresistance of both fresh marrow colony-
forming units-granulocyte, erythrocyte, monocyte,
megakaryocyte and stromal cell lines from SOD1G93A mice
suggested that the defective SOD1 gene may not have
reduced stem cell numbers in the marrow, but may have
depleted the critical motor neurons in the spinal cord. 

We counted motor neurons in spinal cords from mice of
the SOD1G93A genotype in NS 0, 1, 2, 3. While the number
of motor neurons was reduced at NS 1, 2, and 3 compared
to stage 0, there was no clear direct stage-specific loss of
motor neurons with progression of paralysis (Figure 8).

Discussion

In the present study with SOD1G93A ALS mice, we
demonstrated that TBI and bone marrow transplantation
during the symptomatic stage of the disease (day 90) exerted
a profound therapeutic effect by delaying paralysis, and
extending survival two-fold from 120 to over 250 days. This
treatment regimen was significantly more effective than
previous mesenchymal stem cell or bone marrow

transplantation studies in SOD1G93A mice, and in other
models of ALS (51-52). The present treatment paradigm more
accurately recapitulates a therapeutic approach in patients
with ALS since they often exhibit symptoms at the time of
diagnosis. In other studies, from our laboratory using marrow
transplant at day 60 before symptoms, we observed that the
prolongation of survival was even better (data not shown).
We found that SOD1G93A mice, but not transgenic mice with
four copies of normal human SOD1 displayed permeability
of the blood–brain barrier, which was reversible by TBI and
marrow transplant, and we identified bone marrow-derived
M2 microglia at the site of spinal motor neurons. 

The present data suggest that the observed therapeutic
effect of TBI and marrow transplant is mediated by M2
microglia of marrow origin. In the present experiments, TBI
and marrow transplant producing chimeric SOD1G93A mice
resulted in M2 microglial cells of bone marrow origin
accumulating at the site of anterior horn cell degeneration.
Mice receiving 9.0 Gy craniospinal irradiation or sub-lethal
7.0 Gy TBI irradiation alone did not show a therapeutic
effect. Continuous antioxidant treatment with MMS350
(61,62) in drinking water also showed no beneficial effect.

Our data are the first to be reported of successful TBI and
bone marrow transplantation in symptomatic SOD1G93A
mice. Treatment did delay paralysis and more than doubled
the lifespan. We determined that sub-lethal TBI, cranial
spinal, or of the spinal cord only was not therapeutic. A
marrow cell population facilitated accumulation of
therapeutic M2 microglial cells of marrow origin in the
spinal cord at the site of motor neuron, but only after TBI.
These studies are the first to demonstrate that ionizing
irradiation in TBI is therapeutic for ALS. 

Our novel SOD1G93A GFP+ mice and our unique single-
photon, confocal ribbon-scanning microscopy allowed us to
count all green motor neurons in the entire spinal cord. We
have constructed a jig which allows non-anesthetized
immobilized mice to be irradiated in specific areas of the
spinal cord with precise radiation doses. In this way, less
than 1% of the prescribed dose is delivered outside the
irradiated field using our Stereotactic Radiosurgery Unit at
our TrueBeam/Varian linear accelerator. The combination of
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Table II. Radioresistance of superoxide dismutase-1 (SOD1)G93A isolated bone marrow and bone marrow stromal cells.

Mouse Strain                                            SOD1G93A bone marrow cells                                                SOD1G93A bone marrow stromal cells

                                                          Do (Gy)                                            n                                             Do (Gy)                                             n

SOD1 Transgenic                          7.583±0.819                             1.554±0.05989                               8.564±1.564                                1.319±0.0799
SOD1G93A                                   4.791±0.5162                            1.593±0.01132                              3.803±0.3985                             1.653±0.07226
p-Value                                               0.0488                                                                                              0.0210                                          0.0228



these novel techniques allowed us to quantitate the effect of
each of the treatment modalities on preserving the number
of intact and non-degenerating anterior horn motor neuron
cells. Only TBI plus bone marrow transplantation facilitated
the therapeutic effect in these SOD1G93A mice. 

TBI for preparation of recipients for marrow transplant has
been used for over 60 years in the treatment of not only

cancer, but also autoimmune diseases and genetic disorders,
including some that affect the central nervous system (49, 50).
Use of bone marrow transplant in ALS has not been successful
since results showed either no effect (51), or minimal effect
(52). Irradiation effects on the spinal cord and the radiobiology
of neurons have not been considered as a possible therapeutic
modality for diseases of motor neurons in ALS (53). The role
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Figure 6. Continued



of cells of marrow origin, both pro-inflammatory and anti-
inflammatory, in the clinical evolution of ALS has not been
mechanistically coupled with the role of irradiation relative to
abnormalities in the blood–brain barrier in ALS, nor have the
effects of transplanted marrow cells into patients with ALS
been studied relative to prolongation of the paralysis-free
interval (36, 41, 47, 54-58, 66-69). 

Recent data with SOD1G93A mice suggest that the
inflammasome and significantly, interleukin 1 family
cytokines, may mediate motor neuron cell death via
induction of radical oxygen species pathways (70-78). How
M2 microglial from marrow might neutralize these
interactions at the level of the microglial cell to motor
neuron interface is unknown. Because 10% of ALS cases are
familial, these SOD1G93A mice may represent the most
appropriate genetic model for future ALS studies.

The mechanism of cell death in ALS motor neurons is not
known. Apoptosis, necroptosis, ferroptosis, parthanatos, and
pyroptosis may be occurring. The role of M1 microglial cells
in initiating motor neuron destruction and M2 cells in
ameliorating destruction is unknown. Use of TBI and bone
marrow transplantation might be possibly in other
neurodegenerative diseases including: multiple sclerosis,
frontotemporal dementia, and the multiple etiologies of
sporadic ALS such as that following trauma.

SOD1G93A mice receiving bone marrow transplant at day
60 before onset of signs of paralysis fared much better, but
translation of these data to the clinic is not practical since
diagnosis of ALS is made after the onset of symptoms and
weakness. Our mouse data do suggest that the course of
degeneration might be further interrupted by earlier bone
marrow transplantation. The mechanisms for blood–brain
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Figure 6. Improved hematopoiesis in long-term bone marrow cultures from superoxide dismutase-1 (SOD1)G93A mice compared to control SOD1
transgenic mice containing four copies of the normal human transgene (SOD1 transgene) (n=4). Absolute and cumulative data for surface area
confluence (A), cobblestone islands per flask per week (B), non-adherent cells produced per flask per week (C), and colony-forming cells generated
per flask per week at day 7 (D) and day 14 (E). All statistical analysis for the data is shown in Supplementary Tables I to V
(https://pitt.box.com/s/ajzj6ov2cw9ttrbnspnfz3p7d7so7mob).



barrier permeability in ALS, and its restoration by marrow
transplant is at present not known.

The unexpected prolongation of LTBMC hematopoiesis
and the radioresistance of cell lines and fresh marrow from
SOD1G93A mice appears to be unrelated to motor neuron
defects in these same mice. SOD1G93A mice with four copies
of the mutant gene compared to copies of the normal human
gene showed no increase in duration of hematopoiesis in
LTBMCs, and cell lines were not radioresistant. The
defective SOD1 may have caused changes in the bone
marrow resulting in the up-regulation of SOD2, glutathione,
or glutathione peroxidase-4 that may explain the differences
in bone marrow biology in SOD1G93A mice.

TBI combined with bone marrow transplantation is a
potentially valuable therapeutic option for treating ALS. The
subset of donor bone marrow cells (hematopoietic stem cells,
committed granulocyte/macrophage progenitors, or
mesenchymal stem cells) required to provide the therapeutic
effect must also be determined (59, 60, 63, 64, 79-82). 

Lrcc33−/− mice lack central nervous system vascular
abnormalities. These mice have a different transformed
growth factor-beta, develop ascending paraparesis and death
attributable to microglia activation. Recently it was
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Figure 7. Radiation resistance of fresh marrow hematopoietic progenitor cells from superoxide dismutase-1 (SOD1)G93A mice (n=3) (A) and bone
marrow stromal cell lines from SOD1G93A and SOD1 transgenic (B6) mice (B). Radiation survival curves were carried out as described in the
Materials and Method. The data are a composite of data from 3-6 experiments.

Figure 8. Stages of spinal cord paralysis in superoxide dismutase-1
(SOD1)G93A mice. Marrow-transplanted and control SOD1G93A mice
were sacrificed when developing amyotrophic lateral sclerosis with
neurological score (NS) 0, 1, 2 or 3 paralysis (n=3). The spine was
removed from euthanized mice, and the spinal cord was flushed from
the vertebral column, fixed for 2 h in 2% paraformaldehyde, and then
stored in 30% sucrose for 24 h. The number of neurons in sections at
each stage of paralysis was normalized by dividing the number of
neurons by the number of nuclei. 



demonstrated that transplantation of donor bone marrow from
a wild-type mouse ameliorated these abnormalities due to the
migration of wild type bone marrow origin microglia from
the bone marrow (75). These data are a further indication in
another model system that microglia arising from transplanted
marrow can ameliorate a spinal cord degenerative disorder.
Microglia appears to be a central component of the
pathophysiology of ALS, as well as other neurodegenerative
disorders (76), and bone marrow transplants may provide a
cellular mechanism to correct such defects.
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