
Abstract. AT-rich interaction domain 1A gene (ARID1A)
encodes for a subunit of the switch/sucrose non-fermentable
(SWI/SNF) complex, a chromatin remodeling complex, and
it has been implicated in the pathogenesis of various cancer
types. In this review, we discuss how ARID1A is linked to
endometrial cancer and what molecular pathways are
affected by mutation or inhibition of ARID1A. We also
discuss the potential use of ARID1A not only as a prognostic
biomarker, but also as a target for therapeutic interventions.

The dynamic modification of chromatin structure in a
temporal- and spatial-specific manner determines cell fate by
regulating expression levels of specific genes. The
complexity of this process is further highlighted when
considering all the endogenous and exogenous signals
received by each cell during development and throughout its
life. Numerous molecules (proteins and RNA) and
macromolecular complexes are responsible for the
organization of nucleosomes (Figure 1), epigenetic
modifications, the dynamic change between the ‘relaxed’ or
‘tight’ conformation of chromatin (euchromatin and
heterochromatin, respectively) and the accessibility of gene
promoters determining cellular activities such as gene

transcription, DNA repair and cell differentiation. Thus,
disruption of normal chromatin remodeling impairs cellular
development and homeostasis, and it has been associated
extensively with tumorigenesis [reviewed in (1)].

The switch/sucrose non-fermentable (SWI/SNF) complex
is a nucleosome-remodeling factor found in both eukaryotes
and prokaryotes. It is involved in gene expression through
transcriptional regulation and plays a pivotal role in
carcinogenesis (2). This complex changes the DNA
conformation in nucleosomes, allowing recruitment of
transcription factors or other complexes responsible for DNA
repair, replication and proliferation. Thus, when the SWI/SNF
complex is disrupted, aberrant cell cycling is observed, as
well as a loss of control of proliferation (3). SWI/SNF is a
multi-subunit complex and many of its subunits, such AT-rich
interaction domain 1A (ARID1A), ARID1B, SWI/SNF
related, matrix associated, actin dependent regulator of
chromatin, subfamily A, member 2 (SMARCA2) and
SMARCA4 (Figure 2), have been incriminated as driving
mutations in various cancer types due to the high mutation
frequencies observed (4). In particular, when considering
human primary cancer cases with mutations in the SWI/SNF
complex, most of the mutations seen are encountered in the
gene encoding ARID1A (5-7). ARID1A and ARID1B genes
encode DNA-targeting subunits, while SMARCA2 and
SMARCA4 encode ATPase enzymes. The mutation frequency
of these subunits in different cancer types seems to be tumor
type-specific indicating that there is probably differential
participation of the complex in gene regulation in different
tissues (4). Loss of ARID1A has been shown in numerous
human malignancies, such as uterine endometrioid carcinoma
(8-10), ovarian endometrioid carcinoma (11), gastric cancer
(12, 13), esophageal adenocarcinoma (14), pancreatic cancer
(15) and colorectal cancer (16).
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ARID1A

ARID1A gene has been characterized as a tumor suppressor,
and the majority of the mutations seen in human cases are
frame-shift or nonsense mutations (17). It encodes a protein
with both nuclear and cytoplasmic localization, however, it
was shown that nuclear ARID1A is unstable, as it is rapidly
degraded by the nuclear ubiquitin-proteasome system (17,
18). It is known that ARID1A expression is regulated by
somatic mutations, copy number and methylation of its
promoter (19). In-frame deletions disrupting the nuclear
export signal lead to reduced ARID1A levels, due to the
nuclear retention of the protein and its subsequent
degradation (17, 18). As the majority of ARID1A mutations
result in truncated proteins and proteins prone to
degradation, its mutation in cancer highly correlates with
loss of its protein expression, which can be assessed by
immunohistochemistry (12, 15, 20). In addition, missense
mutations in the DNA-binding domain of ARID1A impaired
the activity of the SWI/SNF complex by reducing its
genomic occupancy in mouse embryos, which resulted in
embryonic lethality due to cardiovascular development
defects (21). Furthermore, loss of ARID1A promoted colon
cancer in a mouse model of human colorectal cancer (16)
indicating its involvement in different tissues. According to
next-generation sequencing data, mutations in ARID1A were
not only found in endometrial cancer, but at different
frequencies in a variety of human malignancies, such as 3.2-
3.5% in breast carcinoma (22), 9.1-15% in esophageal
adenocarcinoma (14, 23), 8-27% in gastric carcinoma (24),
8% in pancreatic carcinoma (25), 10-13% in hepatocellular
carcinoma (26), 13% in transitional cell carcinoma of the
bladder (27), 6% in neuroblastoma (28), and 17% in Burkitt
lymphoma (29).

The extensive list of human malignancies found to have
mutated ARID1A highlights the importance of this molecule
and suggests that regulating its expression might be a viable
therapeutic strategy. In fact, restoring ARID1A expression in
ovarian cancer cells expressing mutant ARID1A resulted in
suppression of proliferation and tumor growth in mice,
whereas ARID1A silencing in a mouse tumor xenograft
model increased cellular proliferation and tumorigenicity (8).
Similar findings were also shown in cell lines of esophageal,
breast and gastric cancer, with silencing of ARID1A leading
to increased proliferation and restoration of its expression in
cells carrying the mutant form leading to suppression of
proliferation (23, 24). In addition, further characterization in
a murine preosteoblast cell line showed that ARID1A
inhibition enhanced proliferation by preventing cell-cycle
arrest through the regulation of c-MYC expression (30).
Furthermore, using a high-throughput genetic screening
approach, it was shown that inhibition of ARID1A not only
enhanced proliferation, but also reduced apoptosis of Jurkat

leukemia cells by inhibiting FAS-mediated cell death (31).
When considering tumor progression, it was shown that loss
of ARID1A was associated with reduced progression-free
survival in ovarian clear cell carcinoma (32), as well as deep
myometrial invasion in endometrial carcinoma (33). A role
of ARID1A in tumor initiation was also supported by the
identification of ARID1A mutations and expression loss in
precancerous lesions of esophageal adenocarcinoma, with
higher frequency of loss in lesions with severe dysplasia
(14). All these studies suggest that ARID1A acts as a tumor
suppressor and has an important role in tumor initiation,
disease progression and apoptosis through its regulation of
cellular proliferation in multiple cancer types, including
endometrial cancer (32).

In direct contrast to cancer cells, where Arid1a loss
promoted proliferation and halted cellular differentiation, its
loss in healthy embryonic stem cells had the opposite effect
by impairing the maintenance of the pluripotent characteristics
of the cells, as well as cell proliferation (34). In particular,
ablation of ARID1A in early mouse embryos resulted in
developmental arrest and failure of mesodermal layer
formation. In addition to defective development, loss of
pluripotency, inhibition of self-renewal and promotion of
differentiation into primitive-endoderm-like cells were seen.
This study suggested that ARID1A has a key role in
differentiation with lineage-specific characteristics, as in vitro
development of neurons and skeletal muscle was permitted,
but development of cardiomyocytes and adipocytes was
inhibited. Thus, ARID1A function and expression should be
considered in a spatial and temporal context in relation to
therapeutic and diagnostic potential applications.

Endometrial Cancer and ARID1A

One of the most common and invasive types of
gynecological cancer is endometrial cancer, which in 2015
accounted for 40% of all gynecological cancer cases

in vivo 33: 659-667 (2019)

660

Figure 1. Levels of nucleosome assembly. Nucleosome assembly depends
on histone modifications, ATP-dependent chromatin remodeling, the
action of histone chaperons and the involvement of different histone
variants.



worldwide (35). Endometrial cancer has been divided into
two major groups according to clinical, pathological and
molecular features: type I and type II. Type I encompasses
endometrioid and estrogen-related cancer cases, and is the
most frequent form, as it appears in 80% of patients suffering
from endometrial cancer. It is characterized by unopposed
estrogen stimulation, early onset of symptoms (young
women) and relatively favorable prognosis. In contrast, type
II endometrial cancer (non-endometrioid and non-estrogen-
related) usually presents as serous and clear cell carcinomas,
and this type of cancer is characterized by reduced
association with hormonal risk factors, late onset symptoms
and aggressive clinical course (36).

Epigenetic defects have been identified in endometrial
carcinomas and have been implicated in the pathogenesis of
these carcinomas (37). In particular, ARID1A has been found
mutated in all types of endometrium-associated tumors,
including undifferentiated and dedifferentiated endometrial
carcinomas (38-40). More specifically, ARID1A mutations
were found in 57% of ovarian clear-cell carcinomas (41),
40% of uterine endometrioid carcinomas (42), and between
20% and 36% of uterine carcinosarcomas (43); however,
they were found to be rare in endometrial serous carcinoma
(44). Furthermore, a study investigating the ARID1A loss in
patients with endometrioid carcinoma reported that no
ARID1A loss was seen in complex atypical hyperplasia, with
loss increasing to 25% and 44% of patients with low-grade
and high-grade endometrioid carcinomas, respectively (9).
The differential mutation rates and expression levels of
ARID1A in endometrial and ovarian cancer may denote that
distinct processes might be involved in their tumorigenesis
or disease progression. Thus, it is of great importance to

study the role of ARID1A more not only in the pathogenesis
of endometrial cancer, but also in its effect on the
downstream molecular pathways in order to pinpoint the
clinical relevance of the gene for both diagnostic and
therapeutic interventions.

ARID1A has also been used as a prognostic marker in
endometrial cancer. A significant association of reduced
ARID1A expression has been found with shorter
progression-free survival in patients suffering from
endometrium-related cancer and, especially from ovarian
clear-cell carcinoma, as well as with higher FIGO stage of
both endometrial and ovarian cancer (45). Furthermore, the
very rare occurrence of ARID1A mutations in complex
atypical hyperplasia cases compared to endometrioid
endometrial carcinoma (9, 46), in conjunction with evidence
linking ARID1A to tumor initiation and progression suggest
that it might play a significant role in the transition from
complex atypical hyperplasia to carcinoma through somatic
inactivating mutations (47).

Molecular Pathways

ARID1A mutations affect the activity of SWI/SNF
complexes, which, in turn, lead to transcriptional dysfunction
resulting in aberrant transcriptional signatures in diverse
pathways (6). Loss of components of SWI/SNF complex,
including ARID1A, was found to disrupt not only the
physical assembly of the complex, but also its association
with genomic loci and the recruitment of interacting partners
(co-activators or co-repressors), thereby impeding its
remodeling activity (48). For example, under normal
conditions, ARID1A protein interacts with topoisomerase
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Figure 2. Switch/sucrose non-fermentable (SWI/SNF) complex consists of the core elements SWI/SNF-related, matrix-associated, actin-dependent
regulator of chromatin subfamily A, member 4/2 (SMARCA4/2), SMARCC1, SMARCC2 and SMARCB1 (shown in blue); with the additional subunits
SMARCD1/2/3, SMARCE1, actin-like 6A/B (ACTL6A/B) and double PHD fingers 1/2/3 (DPF1/2/3) (shown in yellow), and the variant components
AT-rich interaction domain 1A/B (ARID1A/B), polybromo 1 (PBRM1), bromodomain-containing 7 (BRD7) and ARID2 (shown in red).



IIα, which plays an important role in chromosome
segregation during mitosis (49, 50). Furthermore, it was
shown that ARID1A is essential in maintaining chromatin
accessibility through histone modifications at enhancers and
this function is shared with ARID1B, a recently found
homolog of ARID1A (51), highlighting the importance of
enhancer architecture in health and disease (52). Loss of
ARID1A was shown to induce neoplastic transformation in
non-tumorigenic endometriotic cells due to alterations in
histone modifications around AP-1 motifs at enhancers,
indicating that ARID1A loss could be an early stage event in
oncogenic transformation (53). When association was sought
with other components of the SWI/SNF complex and
ARID1A, reduced SMARCD3 expression was significantly
associated with human tumors also exhibiting ARID1A loss,
such as lung, pancreatic and kidney carcinomas and
sarcomas (54-58).

In endometrioid endometrial carcinogenesis, activation of
WNT signaling pathway has been observed, potentially
induced by various molecular events such as inhibition of
phosphatase and tensin homolog (PTEN), phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha gene
(PIK3CA) mutations, KRAS proto-oncogene GTPase gene
(KRAS) mutations, microsatellite instability (MSI), tumor
protein P53 gene (TP53) mutations or combinations of these
defects (59). Apart from the high percentage of cases
presenting with ARID1A mutations (40% of low-grade
endometrioid carcinomas), loss of ARID1A expression was
observed in 26-29% of low-grade and up to 39% of high-grade
endometrioid carcinomas (20, 46). In addition, co-occurrence
of ARID1A mutations has been found in carcinomas exhibiting
mutations of PTEN and PIK3CA, and ARID1A-deficient
cancer cells exhibited significantly increase sensitivity to PI3K
and protein kinase B (AKT) inhibition (60). Furthermore,
impairment in the PI3K pathway is a very common feature of
endometrioid carcinoma, accounting for more than 80% of
cases, and ARID1A regulates this pathway through the
phosphorylation of AKT (61). Due to the important effect of
ARID1A deregulation in endometrial carcinogenesis, ARID1A
has been used in addition to eight other genes (protein
phosphatase 2 scaffold subunit Aalpha (PPP2R1A) gene,
PTEN, PIK3CA, KRAS, catenin beta 1 (CTNNB1) gene, TP53,
B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene
and PPP2R5C) to sub-classify endometrial carcinomas based
on mutational profile (62). ARID1A has also been associated
with MSI and mismatch repair (MMR) deficiency due to
silencing of MMR genes in gastric carcinoma and uterine
endometrioid carcinoma (13, 59, 63). In particular, loss of
ARID1A was seen in sporadic MSI in significantly more cases
than in other conditions, and ARID1A-regulated epigenetic
silencing of mutL homolog 1 (MLH1) gene through promoter
hypermethylation has been suggested to be the cause of MSI
(59). Lately, converging pathways were identified for

endometrial and ovarian carcinogenesis, through genetic and
epigenetic analyses in Lynch syndrome, which is associated
with hereditary defects in DNA repair resulting in increased
MSI (64), while ARID1A loss seems to arise in early stages of
carcinogenesis (65). Such a link of ARID1A and MSI was also
described in gastric cancer, further supporting the hypothesis
of mutated ARID1A-driven MSI (12, 13, 66). When
considering the MMR pathways, ARID1A has been found to
interact with MMR protein mutS homolog 2 (MSH2) and
ARID1A deficiency contributes significantly to MMR
impairment (67). Furthermore, Niskakoski et al. found a final
diagnosis of endometrial cancer was given to all patients that
presented with loss of either ARID1A gene or any of the four
MMR genes MLH1, PMS2, MSH6 or MSH2 (64).

On the other hand, the molecular landscape in non-
endometrioid cancer (type II) is characterized by high
frequency of TP53 mutations, up-regulation of p16, human
epidermal growth factor receptor 2 (HER2) gene amplification,
global loss of heterozygosity and alterations in e-cadherin
signaling (68-70). It has been shown that p53 protein directly
interacts with the ARID1A–SMARCA4 complex and this
interaction regulates the transcription of various genes
including cyclin-dependent kinase inhibitor 1A (CDKN1A)
gene and SMAD family member 3 (SMAD3) (8). It has been
proposed that when ARID1A is lost, the CDKN1A and
SDMA3 pathways are disrupted and PI3K/AKT pathway is
aberrantly activated (59). Although loss of ARID1A and
aberrant p53 expression have been described extensively in
clear cell cancer (71-73), examination of ovarian clear-cell
carcinoma, uterine carcinoma and endometrial carcinoma
samples showed that mutations in both ARID1A and TP53
were mutually exclusive (59, 63). ARID1A, p53 and β-catenin
can be used as prognostic biomarkers in both clear-cell and
endometrioid carcinoma, however, a significant correlation has
been established only between ARID1A and β-catenin
expression in endometrioid tumors (74). In a recent study, the
estrogen receptor cofactor nuclear receptor interacting protein
1 (NRIP1) was found to be mutated in 12% of patients with
metastatic endometrial cancer and these mutations were driving
oncogenesis. In the same study, ARID1A mutations were not in
agreement with the finding that driver events might be
common in primary and metastatic tumors, demonstrating
considerable heterogeneity within endometrial cancer cases and
relative homogeneity in metastatic tissues (75).

Since tumors with ARID1A mutations are seen frequently
in hormone-responsive tissues, it is worth considering the role
of ARID1A in the regulation of hormonal signaling. Increased
transcriptional activation through the glucocorticoid, estrogen,
and androgen receptors was seen when ARID1A expression
was restored in ARID1A-deficient breast cancer cells (76).
Regarding other pathways affected by ARID1A, in ARID1A-
deficient endometrial cancer cells, a significant increase in
the level of forkhead box O1 (FOXO1) was observed along
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with down-regulation of the mitogen-activated protein kinase
pathway and the insulin-like growth factor-1 signaling
pathway (77). Although a systematic study investigating all
pathways affected by mutant ARID1A is not yet available, the
importance of such a study is emphasized by the fact that
synthetic lethality was generated when enhancer of zeste 2
polycomb repressive complex 2 subunit (EZH2) inhibitors
were used as therapeutic agents in ARID1A-mutated cancer,
through targeting the phosphoinositide-3-kinase interacting
protein 1 (PIK3IP1), an ARID1A-regulated molecule of the
PI3K/AKT pathway (78), while a new inhibitor of PI3Kα,
showed positive results in human trials (79). Through
synthetic lethality, suppression of cells growth and promotion
of apoptosis are achieved, whereas ARID1B, might have
potential as a therapeutic target in ARID1A-mutated cancer
cells in a molecular-targeted therapeutic approach (51).

Conclusion

Endometrial cancer is one of the most common types of
gynecological cancers, with carcinoma incidence increasing
in every year worldwide. ARID1A loss has been found in
every type of endometrial cancer, indicating its important
role in initiation and progression of this disease. ARID1A,
as member of SWI/SNF chromatin remodeling complex,
interacts with numerous of transcription factors and other
signaling molecules, while its association with several
molecular pathways has been shown. Due to the fact that
defects in ARID1A can affect the expression levels of
various downstream genes, a better understanding is needed
to elucidate which of the pathways affected are important in
the pathogenesis and progression of cancer, and how these
pathways can be targeted. Thus, the mechanism of action of
ARID1A in initiation and progression of cancer cells needs
to be clarified in order to develop new diagnostic tools and
design new, more effective, therapeutic approaches.
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