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Abstract. Background/Aim: There is no consensus on the
effect of hypoxia on neurogenesis. In this study, we
investigated the immunoreactivity of BDNF and PI3K/Akt
signaling after uterine artery ligation in pregnant rats.
Materials and Methods: Unilateral uterine artery ligation
was performed at 16 days of gestation (dg). Fetuses from one
horn with ligated artery were allocated to the hypoxic group.
Immunohistochemistry was performed with primary
antibodies; NeuN, BDNF, PI3K, Akt and phospho-Akt (pAkt).
Results: The densities of NeuN- and BDNF-immunoreactive
(IR) cells in the cerebral cortex were lower in the hypoxic
fetuses than in the controls at 21 dg. The density of PI3K and
PAKkt-IR cells in the cortex of the hypoxic group significantly
decreased. The results in dentate gyrus were similar to the
results in the cerebral cortex. Conclusion: Prenatal hypoxia
reduced Akt phosphorylation, which affected neuronal
survival in the cortex and dentate gyrus.

Prenatal hypoxia causes abnormal brain development. The
brain volumes are reduced in low birth weight infants due
to hypoxic conditions (1). White matter and myelin sheath
are vulnerable to hypoxic conditions (2, 3). This abnormal
fetal brain development is associated with the imbalance
between the increasing oxygen requirement and substrate in
a developing fetus (4). Prenatal hypoxia is a symptom of
chronic placental insufficiency (CPI). CPI leads to
neurological disorders including cerebral palsy (5),
cognitive deficit (6), learning/memory problems (7), and
schizophrenia (8).
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Prenatal hypoxia affects neurogenesis, which is a process
of generation of new neurons from progenitor neuronal stem
cells. There is no consensus on the effect of hypoxia on
neurogenesis. It was reported that prenatal hypoxia induced
neurogenesis in developing rat brain (9). In addition,
progenitor cells in the subventricular zone (SVZ) were
vulnerable to ischemic insult in the fetal mouse (10). SVZ
is a neurogenic zone in the cerebrum, which also includes
the olfactory bulb and the subgranular layer of the
hippocampus (SGZ).

In our previous study, we showed that cell proliferation in
SVZ and dentate gyrus (DG) was not different between
normal and hypoxic fetuses, but cell survival in the cerebral
cortex and DG of the hypoxic group was different from the
normal group. In addition, the number of brain-derived
neurotrophic factor (BDNF)-immunoreactive (IR) cells was
decreased in the cortex and DG (11).

BDNF is important in neuronal cell proliferation, growth
and survival (12). BDNF activates phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt) signaling (13). In this study,
we investigated the immunoreactivity of PI3K and Akt
phosphorylation (pAkt) after hypoxic damage.

Materials and Methods

Animal surgery. All animal experiments were approved by the
Chosun University Institutional Animal Care and Use Committee
(approval number CIACUC2015-A0018). Sprague-Dawley (SD)
rats were obtained from a certified breeder (Damul Laboratory
Animals, Republic of Korea). Rats were mated and checked for
the vaginal plug to confirm the pregnant status. Unilateral uterine
artery ligation was designed as reported in a previous study (14).
Briefly, animals were anesthetized with Zoletil (10 mg/kg;
Virbac, France) and xylazine (0.15 mg/kg; Bayer, Germany), via
intramuscular injection at 16 days of gestation (dg). After
shaving the abdominal region below the umbilicus, a midline
incision was performed under aseptic conditions. The fat pad in
the uterine horn was revealed, and the uterine artery was tied
with silk sutures (4/0). After the procedure, the surgical site was
sterilized with a povidone-iodine solution (Green Medical Co.,
Ltd., Tokyo, Japan).
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Figure 1. Representative photomicrographs of the immunoreactivity for neuronal nuclei (NeuN; A and B) and brain-derived neurotrophic factor
(BDNF; C and D) in the parietal cortex of rats at 21 days gestation (dg). Scale bars=100 um. The densities of the NeuN-immunoreactive (IR; E)
and BDNF-IR (F) cells in the cerebral cortex were significantly decreased in the hypoxic fetuses compared with the controls. The data are expressed

as meanzstandard error of the mean (SEM). *p<0.05.

Tissue preparation. The rat fetuses were delivered by cesarean
sections at 21 dg from pregnant rats (n=14) that were subjected to
hypoxic injuries. Fetuses from one horn with the unligated uterine
artery were allocated to the control group (n=47) and those from the
other horn with the ligated artery were allocated to the hypoxic
group (n=45). After removing fetuses from the uterine horn, brains
were stored in 4% paraformaldehyde (PFA) solution. Fetal
cerebrums were separated from brain stems and fixed in 4% PFA at
4°C. After two days, the cerebrum was cleaned with distilled water
and dehydrated through a graded ethanol series and then the
cerebrums were embedded in paraffin. Serial coronal sections of 12
um thickness were cut and the sections were chosen at regular
intervals from each animal. These sections were placed on gelatin-
coated slides (Fisher Scientific, PA, USA).

Immunohistochemistry. The sections were deparaffinized and
washed in 0.1 M phosphate buffered saline (PBS; pH 7.4). Antigen
retrieval was performed by heating the sections in a microwave with
0.01 M sodium citrate buffer (pH 6.0). After cooling, the sections
were put in 0.3% hydrogen peroxide solution for 20 min to block
endogenous peroxidase. The sections were then incubated with one
of the following primary antibodies overnight at 4°C: mouse anti-
neuronal nuclei (NeuN; 1:100; Millipore, Massachusetts, USA),
rabbit anti-BDNF (1:50; Santa Cruz Biotechnology, TX, USA),
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rabbit anti-Akt (1:50; Santa Cruz, TX, USA), rabbit anti-phospho-
Akt (1:50; Santa Cruz, TX, USA). The next day, the sections were
washed with PBS and treated with appropriate secondary antibodies,
depending on the type of primary antibody. Immunoreactivity was
visualized using avidin-biotin-peroxidase (ABC) detection system
(Vectastain ABC Elite Kit, Vector Laboratories, Burlingame, CA,
USA). Thionin counterstaining was performed, and the sections
were coverslipped using PolyMount mounting medium
(Polysciences, Warrington, PA, USA).

Quantification of IR cells. The slides were observed using a light
microscope (Olympus BX41, USA) connected to a digital CCD
camera. The Image-Pro Plus 7.0 image analysis software program
(Media Cybernetics, Inc., Rockville, MD, USA) was used by three
investigators to measure the densities of the NeuN-, BDNF-, PI3K-,
Akt-, and phospho-Akt (pAkt)-IR cells (cells/mm?2). The density of
positive cells was counted within five randomly chosen defined field
similarly as in a previous study (15).

Statistical analysis. All data were measured using Statistical
Package for Social Sciences (Information Analysis Systems, SPSS,
USA). All measurements were analyzed between the control and
hypoxic groups using Student’s r-test. The level of statistical
significance was set at p<0.05.
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Figure 2. Representative photomicrographs of the immunoreactivity for phosphoinositide 3-kinase (PI3K; A and B), protein kinase B (Akt; C and
D), and phospho-Akt (pAkt; E and F) in the parietal cortex of rats at 21 dg. Scale bars=100 um. The densities of the PI3K-IR (G), Akt-IR (H), and
PpAkt-IR (I) cells in the cerebral cortex of the control and hypoxic fetuses are shown, with significant decreases in the densities of the PI3K-IR and
PAKT-IR cells in the hypoxic fetuses compared with the controls. The data are expressed as mean+SEM. *p<0.05.

Results

Cerebral cortex. The densities of NeuN- and BDNF-IR cells
in the cerebral cortex were lower in the hypoxic fetuses
(n=10) than in the controls (n=10) at 21 dg (p<0.05; Figure
1). The density of PI3K-IR cells in the cortex significantly
was reduced in hypoxic fetuses (Figure 2). Similarly, the
density of pAkt-IR cells in the hypoxic group was lower than
the density of that in the control group (Figure 2). However,
there was no difference between normal and hypoxic fetuses
in the density of Akt-IR cells in the cortex (Figure 2).

Dentate gyrus. The results in dentate gyrus were similar to
the results in the cerebral cortex. The densities of NeuN and
BDNF-IR cells were decreased in the hypoxic group (n=10)
compared with those in the control group (n=10) (Figure 3).
The densities of PI3K and pAkt-IR cells were lower in the
hypoxic group than in the control group (Figure 4).
Interestingly, the density of Akt-IR cells was not different
between the control and hypoxic groups (Figure 4).

Discussion

Hypoxic condition was made by unilateral uterine artery
ligation of pregnant rats. This condition significantly
decreased uterine blood flow and fetal body weight (16). In
our previous study, we examined two regions, cerebral
cortex, and dentate gyrus of the hippocampus and
determined the neuronal loss and decrease in neurotrophic
factor level (11). Therefore, in this study, we investigated the
immunoreactivity of NeuN, BDNF, PI3K, Akt, and pAkt in
the same two regions mentioned above. The densities of
NeuN-, BDNF-, PI3K- and pAkt-IR in the cerebral cortex
and dentate gyrus of hypoxic group fetuses were lower than
in that of the control group.

BDNF is an important neuronal factor that protects from
ischemic brain injury. It is a member of the neurotrophin
(NT) gene family, which includes nerve growth factor,
neurotrophin-3 (NT-3) and NT-4. NT genes are involved in
modulating the survival and development of neurons (17).
BDNF synthesis is regulated by calcium influx (18). Under
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Figure 3. Representative photomicrographs of the immunoreactivity for NeuN (A and B) and BDNF (C and D) in the dentate gyrus (outlined by
blue boxes) of rats at 21 dg. Scale bars=100 um. The densities of the NeuN-IR (E) and BDNF-IR (F) cells in the dentate gyrus were significantly
decreased in the hypoxic fetuses compared with the controls. The data are expressed as mean+SEM. *p<0.05.

hypoxic condition, calcium homeostasis is not maintained
(19), suggesting that prenatal hypoxia reduces the density of
BDNF-IR cells. The survival function of BDNF is regulated
by activation of two cell surface receptors, TrkB and p75
neurotrophin receptor (20). BDNF activates several
intracellular signaling pathways via TrkB receptor, for
example, PI3K/Akt pathway, which affects the function of
the developing nervous system (13).

Some recent studies suggest that PI3-kinase is an
intracellular transducer of survival signals and is initiated by
diverse growth factors (21-23). Akt, known as protein kinase
B, is a protein kinase associated with survival signals that are
modulated by downstream kinase of PI3-K in growth factor-
induced signaling cascades (24). Akt is activated by PI3-
kinases and binds phosphorylated lipids membrane (25).
PI3K/Akt signaling is involved in cell proliferation, cell
migration, survival, and dendritic growth through mTOR (26).
This signaling was activated to varying degrees of
phosphorylation of BDNF and activation of AKT, which
promoted neuronal survival and prevented apoptosis through
under cellular mechanism such as phosphorylation of Bad (27).

858

In neonatal rats, phospho-Akt is decreased during hypoxia
but the total Akt level is unchanged, similarly to our results
(28). Hristelina et al. showed that p-Akt signal was lower
immediately after recovery from 2 h of hypoxia, compared to
the normoxic group (29). These reports suggest that energy
for activation of Akt to compensate for oxidative stress was
not enough under hypoxic conditions. Another report showed
a temporary increase of Akt phosphorylation (30). However,
the mechanism of Akt phosphorylation during or after
hypoxia is not clear. Ouyang suggested that cytochrome c is
released from the mitochondria after Akt activation in a
global ischemia model (31). Some studies reported regional
differences in phosphorylation of Akt after hypoxic damage
(24, 25), which might be associated with the severity of
ischemic insults (25).

Conclusion
Prenatal hypoxic damage reduced neuronal cell survival in

cerebral cortex and dentate gyrus. This phenomenon was
caused by decreasing Akt phosphorylation.
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Figure 4. Representative photomicrographs of the immunoreactivity for PI3K (A and B), Akt (C and D), and pAkt (E and F) in the dentate gyrus
(outlined by blue boxes) of rats at 21 dg. Scale bars=100 um. The densities of the PI3K-IR (G), Akt-IR (H), and pAkt-IR (I) cells in the dentate
gyrus of the control and hypoxic fetuses are shown, with significant decreases in the densities of the PI3K-IR and pAKT-IR cells in the hypoxic
fetuses compared with the controls. The data are expressed as mean+SEM. *p<0.05.
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