Review

Propeller Flaps: A Literature Review

ANDREA SISTI, CARLO D'ANIELLO, LEONARDO FORTEZZA, JURI TASSINARI, ROBERTO CUOMO, LUCA GRIMALDI and GIUSEPPE NISI

Plastic Surgery Division, General and Specialist Surgery Department, University of Siena, Siena, Italy

Abstract

Background/Aim: Since their introduction in 1991, propeller flaps are increasingly used as a surgical approach to loss of substance. The aim of this study was to evaluate the indications and to verify the outcomes and the complication rates using this reconstructing technique through a literature review. Materials and Methods: A search on PubMed was performed using "propeller flap", "fasciocutaneous flap", "local flap" or "pedicled flap" as key words. We selected clinical studies using propeller flaps as a reconstructing technique. Results: We found 119 studies from 1991 to 2015. Overall, 1,315 propeller flaps were reported in 1,242 patients. Most frequent indications included loss of substance following tumor excision, repair of trauma-induced injuries, burn scar contractures, pressure sores and chronic infections. Complications were observed in 281/1242 patients (22.6%) occurring more frequently in the lower limbs (31.8\%). Partial flap necrosis and venous congestion were the most frequent complications. The complications' rate was significantly higher in infants $(<10$ years old) and in the older population (>70 years old) but there was not a significant difference between the sexes. Trend of complication rate has not improved during the last years. Conclusion: Propeller flaps showed a great success rate with low morbidity, quick recovery, good aesthetic outcomes and reduced cost. The quality and volume of the transferred soft tissue, the scar orientation and the possibility of direct donor site closure should be considered in order to avoid complications. Indications for propeller flaps are small- or medium-sized defects located in a wellvascularized area with healthy surrounding tissues.

Correspondence to: Andrea Sisti, MD, Plastic Surgery Division, General and Specialist Surgery Department, University of Siena, Siena, Italy. Tel: +39 0577585158, e-mail: asisti6@gmail.com

Key Words: Propeller flaps, perforator flap, surgical flaps, fasciocutaneous flap, island flaps, pedicled flap, local flaps, review.

The propeller flap represents a model of local perforator flap and, according to the Tokyo Consensus, can be defined as "an island flap that reaches the recipient sites through an axial rotation"(1).

Hyakusoku et al. first used the term 'propeller flap' in 1991, describing two subcutaneous pedicled island flaps, vascularized by a perforator artery in the center and rotated 90°, for the reconstruction of skin scar contractures in burn patients (2).

With the improvement of knowledge on cutaneous vascular system, perforator flaps are increasingly used in clinical practice. In 2001, the Fifth International Course on Perforator Flaps, held in Gent, provided the "Consensus on Perforator Flap Terminology"(3) and, in 2009, the First Tokyo Meeting on Perforator and Propeller Flaps proposed a classification based on the perforator vessel supplying the flap (1).

Since several reconstructive options exist to cover loss of substance all over the body, the choice of the correct approach to any given defect should consider the specific, individual needs of the patient. The aim of this study was to evaluate the indications and to verify the outcomes and the complication rate of propeller flaps, as alternative to other types of surgical or clinical approaches.

Materials and Methods

A literature search of the PubMed database was performed using the key words ''propeller flap", "fasciocutaneous flap", "local flap" or "pedicled flap". Additional articles were selected reviewing the citations of publications identified using these key words.
Inclusion criteria among these papers were:

- the paper was a case study, case report, clinical trial, open label prospective study, case series, retrospective study or letter to the editor;
- propeller flap was used as surgical therapy.

Exclusion criteria were:

- the paper did not provide sufficient details about the performed surgical procedure;
- the performed technique did not match the Tokyo Consensus classification (1);
- the paper was a review of literature.

We considered the database until April 2015. Both English and non-English language papers were included. Each article was tabulated as follows: author/s, year of the study, demographic data, vascular territory, number of propeller flaps, angle of rotation, indication, defect location, flap shape and size, follow-up time and complications. All kinds of propeller techniques were considered. The publications were screened manually and reviewed to identify reports on propeller flap techniques.

Results

Of the initial 162 studies yielded from our search, 160 were selected for the second stage and, after the screening of 132 full-text papers, 119 studies met the definitive inclusion criteria (Tables I and II).

Among the clinical studies included, 1315 propeller flaps were used in a total of 1,242 patients; 387 patients were female (31.16%), 675 patients were male (54.35%), while gender was not specified for 180 patients (14.49%). Mean age of the subjects was 45.9 years (age range $=0-94$, $\mathrm{SD}=25.26$). Angle of rotation of the propeller flap was not specified in 268 flaps.

Etiology of tissue defect was not specified in 122 propeller flaps (9.3%). The most frequent etiologies were tumor excision (409 patients, 31.1\%), trauma (376 patients, 28.6%), burn (106 patients, 8.1%), pressure sore (61 patients, 4.6%), osteomyelitis or osteitis (33 patients, 2.5%), peripheral arterial occlusive disease (25 patients, 1.9%), hidradenitis suppurativa (23 patients, 1.7%), scar correction (22 patients, 1.7%), infection (21 patients, 1.6%) and outcomes of previous surgeries (21 patients, 1.6%).

Vascular territory was not specified in 322 propeller flaps (24.5%). The most frequent origins of perforators were posterior tibial artery (PTA) in 272 flaps (20.7%), peroneal artery (PA) in 102 flaps (7.8%) and thoraco-dorsal artery (TDA) in 86 flaps (6.5\%).

Defect location was not specified in 135 propeller flaps (10.3%). Anatomical sites of the propeller flaps were lower limb (503 flaps, 38.3\%), trunk and perineum (385 flaps, 29.3\%), upper limb (158 flaps, 12.0\%) and head and neck (134 flaps, 10.2\%).

Flap shape was not specified in 971 propeller flaps (73.8%); among the specified shapes ($344,26.2 \%$), the elliptical shape was the most frequent (284 flaps, 82.6% of specified shapes).

Flap size was not specified in 648 propeller flaps (49.3\%); mean size between the specified studies was $98 \mathrm{~cm}^{2}$.

Mean follow-up was 15 months. Follow-up was not specified in 398 patients (30.3%). Among the total of 1,315 propeller flaps, 958 (72.8%) healed uneventfully. Overall, 548 complications occurred in 281/1242 patients (22.6%). The most frequent complications were partial flap necrosis (86 flaps, 6.54%), venous congestion (66 flaps, 5.0%), complete flap necrosis (35 flaps, 2.7\%), dehiscence (28 flaps, 2.1%),
hematoma/seroma (13 flaps, 1%), epidermolysis (12 flaps, 0.9%), wound infection (12 flaps, 0.9%), edema/lymphedema (11 flaps, 0.8%), loss of sensation/numbness/paraesthesia (9 flaps, 0.7%), osteomyelitis (5 flaps, 0.4%) and formation of a bursa / fistula (4 flaps, 0.3%).

Substitutive skin graft or another flap was needed in 31 flaps (2.4%), skin graft to close donor site was needed in 117 cases (8.9%), second operation was necessary in 68 patients (5.2%), 7 patients (0.5%) required amputation of the affected part of the body because of complications occurred following the surgical procedure. In 5 patients (0.4%), it was impossible to perform a propeller flap because a useful perforator artery was not found $(4,5)$.

Major complications' rate (partial flap necrosis, venous congestion and complete flap necrosis) was 14.2%.

Complications occurred most frequently in patients who underwent lower limb perforator flaps (160/497 patients, 31.8%; major complications' rate $=20.7 \%$). Patients who underwent perforator flaps on trunk and perineum reported a complication rate of 19.5% (75/324 patients, major complications' rate $=11.2 \%$). For patients who were operated on head and neck, the complication rate was 15.7% (21/134 patients, major complications' rate: 11.2%). A similar complication rate was observed in patients who underwent perforator flap on upper limb ($25 / 156$ patients, 15.9%, major complications' rate $=14.6 \%$).

Partial flap necrosis was the most frequent complication in lower (11.3% of flaps) and upper limb (8.9% of flaps) propeller flaps. Instead, venous congestion was the most frequent complication in head/neck (8.2% of flaps) and trunk/perineum (5.7% of flaps) propeller flaps.

Newborns and elderly patients showed a higher rate of complications (Figure 1).

No statistically significant difference in the distribution of the complications' rate according to sex was found, as well as during the last years (Table III).

Advantages-disadvantages of propeller flaps are summarized in Table IV.

Discussion

Basic concepts, guidelines, classification and principles of propeller flaps are well-described in the literature (28,30 , $116,122,123$).

Relying on our results, propeller flaps were an appealing option when the defect to treat had small to medium size and was located in a well-vascularized area with healthy surrounding tissues. Lower limb district showed the highest complication rate, almost twice than the other areas, associated with the highest number of skin grafts or other flaps needed to close donor sites; therefore, propeller flaps showed better results when direct donor site closure was achievable without tension in the area.

Table I. Data about propeller flaps, grouped depending on anatomical site.

Anatomical region	Vascular N° territory of pts	Demographic data	N° of flaps	Etiology	Defect location	Flap shape and size	Mean follow-up in months	Complications rate	Complications of flaps (number of flaps, percent of flaps)
Head \& neck: 12 studies (6-17)	$\begin{aligned} & 51 \text { STA, } 134 \\ & 35 \text { FACA, } \\ & 23 \text { DLA, } \\ & 3 \text { SLA, } \\ & 3 \text { TCA, } \\ & 2 \text { PAA, } \\ & 2 \text { SCA, } \\ & 1 \text { RAA, } \\ & 8 \text { Not } \\ & \text { specified } \end{aligned}$	29 F and 64 M , 41 sex not specified; mean age $=$ 70.2 yo	134	130 Tumor excision 2 trauma 1 venous insufficiency 1 nostril stenosis	79 nose 23 oral cavity 12 nasolabial and perinasal region 5 lower eyelid 5 Neck 4 ear 3 upper lip 2 lower lip 1 cheek 1 retroauricular region	126 shape not specified, 6 elliptical, 1 rectangulal, 1 triangular; Mean size $17,2 \mathrm{~cm}^{2}$	7	$\begin{gathered} 21 \mathrm{pts} \\ (15.7 \%) \end{gathered}$	Venous congestion (11, 8.2\%) Partial flap necrosis (4, 3.0\%) Trapdoor deformity (2, 1.5\%) 2nd operation needed (1,0.7\%) Edema/lymphedema (1, 0.7\%) Septicemia/ infection in other site (1, 0.7\%) Flap bulkiness (1, 0.7\%)
Upper limb: 23 studies	$\begin{aligned} & \text { (2, 5, 6, 10, } 156 \\ & \text { 13, 18-35) } \\ & \text { 33 RA, } \\ & \text { 27 UA, } \\ & \text { 17 RCA, } \\ & \text { 9 IOA, } \\ & 7 \text { BA, } \\ & 7 \text { UDA, } \\ & \text { 6 DMA, } \\ & \text { 4 AXA, } \\ & \text { 4 SUCA, } \\ & \text { 3 RRA, } \\ & \text { 3 RUA, } \\ & \text { 3 TAA, } \\ & \text { 2 DCA, } \\ & \text { 1 DBA, } \\ & \text { 32 Not } \\ & \text { specified } \end{aligned}$	46 F and $95 \mathrm{M}, 15$ sex not specified; mean age= 41.9 yo	158	62 Burn 58 trauma 18 tumor excision 11 cyst/bursa 2 electrical injury 2 post snake bite defect 2 radiation induced ulcer 1 extravasations of radiographic contrast medium 1 pressure sore 1 scar correction	73 upper limb (not better specified) 39 Elbow 13 forearm 12 wrist/hand 11 hand finger 5 upper arm	104 shape not specified, 31 elliptical, 8 eight-limbmodified, 7 diamondshaped 4 quadrilobed, 2 trilobed, 2 bilobed, 1 doublepedicled; Mean size $68,6 \mathrm{~cm}^{2}$	14	$\begin{gathered} 25 \mathrm{pts} \\ (15.9 \%) \end{gathered}$	Partial flap necrosis (14, 8.9\%) 2nd operation needed (10, 6.3\%) Complete flap necrosis (6, 3.8\%) Skin graft needed to close donor site (5, 3.2%) Venous congestion (3, 1.9\%) Substitutive skin graft or flap needed (1, 0.6%) Wound infection (1, 0.6\%) Hematoma/seroma (1, 0.6%) Edema/lymphedema (1, 0.6\%) Formation of a bursa/ fistula ($1,0.6 \%$) Epidermolysis (1, 0.6\%) Dehiscence ($1,0.6 \%$) Donor site infection (1, 0.6\%) Insufficient release of burn scar contracture ($1,0.6 \%$)
Trunk and perineum: 52 studies $\begin{aligned} & (2,4,5,10, \\ & 12,19,21, \\ & 31,34, \\ & 36-76) \end{aligned}$	$\begin{aligned} & 86 \text { TDA, } 324 \\ & 58 \text { IPA, } \\ & 46 \text { SGA, } \\ & 16 \text { SEA, } \\ & 13 \text { IGA, } \\ & 13 \text { LICA, } \\ & 11 \text { DICA, } \\ & 11 \text { ICA, } \\ & 8 \text { ITA, } \\ & 7 \text { PICA, } \\ & 4 \text { DIEA, } \end{aligned}$	149 F and $120 \mathrm{M}, 55$ sex not specified; mean age= 50.0 yo	385	199 Tumor excision 49 pressure sore 33 burn 23 hidradenitis suppurativa 19 meningomyelocele/ pseudomeningocele	79 breast 72 axilla 58 back 38 vagina 24 sacrum 23 chest 18 gluteus 15 anus and perineum 13 ischium 10 torso	291 shape not specified, 65 elliptical, 8 quadrilobed 7 trilobed, 7 multi-island 2 bilobed, 2 L-shaped, 1 triangular, 1 rectangular,	16	$\begin{gathered} 75 \mathrm{pts} \\ (19.5 \%) \end{gathered}$	Venous congestion (22, 5.7\%) Dehiscence (15, 3.9\%) Partial flap necrosis (12, 3.1\%) 2nd operation needed (12, 3.1\%) Complete flap necrosis (9, 2.3\%) Hematoma/seroma

Table I. Continued

Anatomical region	Vascular N° territory of pts	Demographic data	N° of flaps	Etiology	Defect location	Flap shape	Mean follow-up	Complications rate	Complications of flaps (number of flaps, percent of flaps)
	$\begin{gathered} 4 \text { DLICA, } \\ 3 \text { TAA, } \\ 2 \text { AICA, } \\ 2 \text { LTA, } \\ 2 \text { PNA, } \\ 2 \text { DSEA, } \\ 1 \text { CSA, } \\ 1 \text { IMA, } \\ 1 \text { LICA, } \\ 1 \text { SCIA, } \\ 93 \text { not } \\ \text { specified } \end{gathered}$			9 osteomyelitis/ osteitis 7 scar correction 4 radiation induced ulcer 3 trauma 3 dehiscence 3 cyst/bursa 2 closure of donor site of precedent flap 1 infection electrical injury 1 fistula	10 trunk (not better specified) 6 abdomen 5 pelvic cavity 3 flank 2 shoulder 2 scapula 1 lateral thoracic region 1 supraclavicolar region 1 groin	23 doublepedicled; Mean size $111,2 \mathrm{~cm}^{2}$			(8, 2.1%) Loss of sensation/ numbness/ paraesthesia (7, 1.8\%) Substitutive skin graft or flap needed (5, 1.3\%) Skin graft needed to close donor site (3, 0.8%) Failure to find a useful perforator ($3,0.8 \%$) Formation of a bursa/ fistula (2, 0.5\%) Evacuation needed (2, 0.5\%) Tension in donor site ($1,0.3 \%$) Erythema (1, 0.3%) Cellulitis ($1,0.3 \%$) Flap bulkiness (1, 0.3\%) Recurrence of precedent disease (1, 0.3\%) De-rotation of the pedicle needed (1, 0.3\%) Insufficient release of burn scar contracture ($1,0.3 \%$)
Lower limb: 48 studies $(6,10,13$, 24, 28, 34, 44, 45, 48, 77-115)	$\begin{aligned} & 257 \text { PTA, } 497 \\ & 102 \text { PA, } \\ & 13 \mathrm{DFA}, \\ & 10 \mathrm{FA}, \\ & 8 \text { ATA, } \\ & 8 \text { DGA, } \\ & 7 \text { PDA, } \\ & 6 \mathrm{MA} \text {, } \\ & \text { 5 LCFA, } \\ & \text { 2 DPA, } \\ & 2 \text { FDMA, } \\ & \text { 2 GA, } \\ & \text { 2 LMA, } \\ & \text { 2 SA, } \\ & 2 \text { SMGA, } \\ & \text { 1 LPCA, } \\ & \text { 1 MPA, } \\ & \text { 1 MSGA, } \\ & \text { 1 SLGA, } \\ & \text { 1 TA, } \\ & 70 \text { Not } \\ & \text { specified } \end{aligned}$	$\begin{gathered} 136 \mathrm{~F} \text { and } \\ 329 \mathrm{M}, 32 \text { sex } \\ \text { not specified; } \\ \text { mean age= } \\ 49.9 \text { yo } \end{gathered}$	503	210 trauma 62 tumor excision 25 PAOD 24 osteomyelitis/ osteitis 21 Complication of precedent surgery 21 infection 13 scar correction 10 pressure sore 10 closure of donor site of precedent flap 8 dehiscence 7 diabetic ulcer 6 burn 5 spokes 4 venous	210 distal third of leg 67 lower limb (not better specified) 61 Knee and upper leg, 56 foot 37 Achilles tendon 25 ankle 15 heel 10 fibula 7 malleolus 5 middle third of leg 4 tibia 4 trochanter	320 shape not specified, 178 elliptical, 3 round, 1 bilobed, 1 quadrilobed, 4 doublepedicled; Mean size $109,4 \mathrm{~cm}^{2}$	23	$\begin{aligned} & 160 \mathrm{pts} \\ & (31.8 \%) \end{aligned}$	Skin graft needed to close donor site (110, 21.9\%) Partial flap necrosis (57, 11.3\%) 2nd operation needed ($40,8.0 \%$) Venous congestion (30, 6.0\%) Sostitutive skin graft or flap needed ($20,4.0 \%$) Complete flap necrosis (17, 3.4\%) Dehiscence (13, 2.6\%) Epidermolysis (12, 2.4\%) Wound infection (10, 2.0\%) Edema/ lymphedema (9, 1.8\%) Amputation needed

Table I. Continued

Table I. Continued

Anatomical region	Vascular N° territory of pts	Demographic data	N° of flaps	Etiology	Defect location	Flap shape and size	Mean Complications follow-up rate in months	Complications of flaps (number of flaps, percent of flaps)
								perforator (5, 0.4%)
								Formation of a bursa/ fistula (4, 0.3\%)
								ension in donor site $(3,0.2 \%)$
								Septicemia/infection in other site ($2,0.15 \%$)
								Flap bulkiness (2, 0.15\%)
								Recurrence of precedent disease (2, 0.15\%)
								Evacuation needed $(2,0.15 \%)$
								Trapdoor deformity $(2,0.15 \%)$
								Erythema (1, 0.1\%)
								Cellulitis (1, 0.1\%)
								Donor site infection $(1,0.1 \%)$
								Hypertrophic keloid scar ($1,0.1 \%$)
								Perforator accidentally cut ($1,0.1 \%$)
								De-rotation of the pedicle needed ($1,0.1 \%$)
								Insufficient release of burn scar contracture (1, 0.1%)
								Necrosis of underlying organs ($1,0.1 \%$)

AICA, Anterior intercostal artery; ALT, anterolateral thigh; ATA, anterior tibial artery; AXA, axillary artery; BA, brachial artery; CRA, collateral radial artery; CSA, circumflex scapular artery; d, days; DBA, deep brachial artery; DCA, dorsal carpal artery; DFA, deep femoral artery; DGA, descending genicular artery; DICA, dorsal intercostal artery; DIEA, deep inferior epigastric artery; DLA, deep lingual artery; DLICA, dorso-lateral intercostal artery; DMA, dorsal metacarpal artery; DPA, dorsalis pedis artery; DSEA, deep superior epigastric artery; F, female; FA, femoral artery; FACA, facial artery; FDMA, first dorsal metatarsal artery; GA, genicular artery; ho, hours old; HT, hospitalisation time; ICA, intercostal artery; IGA, inferior gluteal artery; IOA, anterior interosseous artery; IMA, internal mammary artery; IPA, internal pudendal artery; ITA, internal thoracic artery; LA, lumbar arteries; LCFA, lateral circumflex femoral artery; LICA, lateral intercostal artery; LMA, lateral malleolar artery; LNA, lateral nasal artery; LPCA, lateral popliteal cutaneous artery; LTA, lateral thoracic artery; M, male; MA, metatarsal artery; mo, months; MPA, medial plantar artery; MSGA, medial superior genicular artery; p. flaps, propeller flaps; PA, peroneal (fibular) artery; PAA, posterior auricularartery; PAOD, peripheral arterial obstructive disease; p.com., personal communication; PDA, plantar digital artery; PICA, posterior intercostal arteries; PNA, perineal artery; pt, patient; PTA, posterior tibial artery;, patients; RA, radial artery; RAA, retroauricular artery; RCA, radial collateral artery; RRA, recurrent radial artery; RUA, recurrent ulnar artery; SA, saphenous artery; SCA, superficial cervical artery; SCIA, superficial circumflex iliac artery; SEA, superiorepigastric artery; SGA, superior gluteal artery; SIEA, superficial inferior epigastric artery; SLA, superior labial artery; SLGA, superior lateral genicular artery; SMGA, superior medial genicular artery; STA, supratrochlear artery; SUCA, superior ulnar collateral artery; TA, tibial artery; TAA, thoraco-acromial artery; TCA, transverse cervical artery; TDA, thoraco-dorsal artery; UA, ulnar artery; UDA, ulnar digital artery; VAC, vacuum assisted closure; y, year/years; yo, years old.

On 1,315 propeller flaps, 35 (2.7%) were lost, whereas, in 31 cases (2.4%), a substitutive skin graft or another flap was needed. These values corroborate data found by Lazzeri et al. (123). We planned to match our results with other reconstructive techniques but, in literature, there are not many big-populated studies reporting analogous data.

In the head and neck district, we compared our results with the Zhang et al.'s experience (124) on microsurgical free flaps (Table V). Propeller flaps showed a higher success rate than microsurgery, although with a little higher complication rate. The lower flap loss rate could rely on reduced dimensions of the defects without the need of microvascular anastomosis.

Table II. Overview of clinical studies on propeller flaps.

First Author, (Ref \#)	$\begin{gathered} \mathrm{N}^{\circ} \text { of } \\ \mathrm{pts} \end{gathered}$	Demographic Data	Vascular territory	N° of p. flaps	Angle of rotation	f Indication	Defect location	Flap shape and size	Follow-up in months	Complications
Hyakusoku H, (2)	2	2 M ; 17 and 20 yo (mean= 18.5 уо)	Not specified	2	90°	Burn scar contractures	Elbow and axilla	Subcutaneous pedicled flap with a pedicle in the centre	6-12	None
Murakami M, (5)	13	6 F and 7 M ; age range $=2-58$ yo (mean= 34.7 уо)	Not specified	19	90°	Burn scar contractures	13 Axilla, 6 elbow	7 trilobed, 12 quadrilobed	3-36	Insufficient release of contracture, resolved spontaneously after 3 years (1 pt)
Aslan G,	7	$\begin{gather*} 4 \mathrm{~F} \text { and } 3 \mathrm{M} \text {; } \\ \text { age range }=7-25 \tag{18}\\ \text { yo (mean= } \\ 16.0 \text { yo) } \end{gather*}$	Not specified	7	90°	Burn scar contractures	Elbow ba al	Diamond shaped, based on the central subcutaneous pedicle designed along the long axis of the burn contracture	$\begin{aligned} & \text { Up to } \\ & \text { al } \quad 24 \\ & \text { is } \end{aligned}$	Skin graft needed to close donor site (2 pts)
Hallock GG, (4)	2	$\begin{gathered} 2 \mathrm{M} ; 41 \text { and } \\ 53 \text { yo (mean= } \\ 47 \text { yo) } \end{gathered}$	IGA	3	180°	Pressure sore	1 Ischium, 1 trochanter	Not specified	12	Skin graft needed to close donor site (1 pt)
$\begin{aligned} & \text { Hyakusoku H, } \\ & \text { (36) } \end{aligned}$	2	$\begin{gathered} 1 \mathrm{~F} \text { and } 1 \mathrm{M} \text {; } \\ 17 \text { and } 42 \\ \text { yo (29.5 yo) } \end{gathered}$	Not specified	2	90°	Burn scar contractures	Axilla	Trilobed	24-36	None
Moscatiello F, (78)	6	1 F and 5 M ; age range $=43-72$ yo (mean= 55.5 yo)	$\begin{gathered} 3 \text { DGA, } \\ 2 \mathrm{SA}, 1 \\ \text { FA } \end{gathered}$	6	$180^{\circ} 3$	3 Tumor excision, 2 unstable scar, 1 open fracture	Knee and upper leg	Width $>10 \mathrm{~cm}$	12-48	Partial flap necrosis, required 2nd operation (1 pt) Skin graft needed to close donor site (6 pts)
Hyakusoku H, (19)	2	$\begin{aligned} & 1 \mathrm{~F} \text { and } 1 \mathrm{M} \text {; } \\ & 18 \text { and } 53 \text { yo } \\ & \text { (mean=35.5 yo) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{SGA}, \\ & 1 \text { DBA } \end{aligned}$	2	180°	1 Pressure sore, 1 trauma	1 Sacrum, 1 elbow	Acentric perforator pedicled	Not specified	None
Jakubietz RG, (77)	8	1 F and 7 M ; age range $=45-86$ yo (mean= 61.4 yo)	$\begin{aligned} & 5 \mathrm{PA}, \\ & 3 \mathrm{PTA} \end{aligned}$	8	180°	2 Open fracture, 2 osteomyelitis, 2 dehiscence, 1 unstable scar, 1 diabetic ulcer	1 Heel, 4 lateral malleolus, 3 Achilles tendon	Elliptical	6	Skin graft needed to close donor site (1 pt) Epidermolysis with venous congestion (2 pts) Partial flap necrosis, below-knee amputation needed (1 pt)
Pignatti M, (79)	6	$\begin{gathered} 1 \mathrm{~F} \text { and } 5 \mathrm{M} \text {; } \\ \text { age range= } \\ 15-63 \text { yo } \\ (\text { mean }=52.5 \text { уо }) \end{gathered}$	Not specified	6	$\begin{array}{r} 290^{\circ}, \\ 2135^{\circ}, \\ 2180^{\circ} \end{array}$	5 Trauma, 1 infection of prosthesis	Leg and knee	1 Round, 1 two-bladed; 3 double pedicled; from 8 x 9 cm to	Not specified	Partial flap necrosis of the flap (1 pt) Venous congestion, resolved
$\begin{aligned} & \operatorname{Rad} \mathrm{AN}, \\ & (80) \end{aligned}$	1	M; 40 yo	PA	1	180°	Tumor excision	Ankle	$25 \times 12 \mathrm{~cm}$ Elliptical, $22 \times 8 \mathrm{~cm}$	22	spontaneously (2 pts) Skin graft needed to close donor site Loss of sensation in the sural nerve distribution
$\begin{aligned} & \text { Rubino C, } \\ & (81) \end{aligned}$	1	F; 78 yo	PA	1	180°	Chronic osteomyelitis	Distal third of the fibula	$16 \times 6 \mathrm{~cm}$	12	None
Xu Y, (38)	6	$\begin{gathered} 2 \mathrm{~F} \text { and } 4 \mathrm{M} \text {; age } \\ \text { range }=28-67 \\ \text { yo (mean= } \\ 51.3 \text { yo) } \end{gathered}$	SGA	7	90°	Pressure sore	Sacrum	Multi-island design, from $12 \times 16 \mathrm{~cm}$ to $25 \times 30 \mathrm{~cm}$	$\begin{gathered} 6-38 \\ (\text { mean } \\ 20,1) \end{gathered}$	Numbness in the donor site (6 pts)
Bravo FG, (6)	6	$\begin{gathered} 2 \mathrm{~F} \text { and } 4 \mathrm{M} \text {; age } \\ \text { range }=52-65 \text { yo } \\ \text { (mean }=59.3 \text { yo) } \end{gathered}$	$\begin{gathered} 2 \mathrm{PTA}, \\ 2 \mathrm{RA}, \\ 1 \mathrm{TCA}, \\ 1 \mathrm{SGA} \end{gathered}$	6	180°	3 Pressure sore, 3 trauma 2	2 Distal lower extremity, 2 distal upper extremity,	er 4 elliptical, 1 triangular, er 1 V-rectangular; from $4 \times 12 \mathrm{~cm}$	12	Dehiscence, required surgical revision (1 pt)

Table II. Continued

First Author, (Ref \#)	N° of pts	Demographic Data	Vascular territory	N° of p. flaps	Angle of rotation	Indication	Defect location	Flap shape and size	Follow-up in months	Complications
Jakubietz RG, (37)	3	3 M , age range= 29-73 yo (mean= 56.3 уо)	$\begin{gathered} 2 \text { SGA, } \\ 1 \text { IGA } \end{gathered}$	3	180°	Pressure sore	1 cervical, 1 trochanter 2 Ischium, 1 sacrum	to $12 \times 22 \mathrm{~cm}$ Elliptical; from $7 \times 16 \mathrm{~cm}$, to $9 \times 18 \mathrm{~cm}$	5-6	Dehiscence (1 pt) Hematoma, required drainage (1 pt)
$\begin{aligned} & \text { Battiston B, } \\ & (20) \end{aligned}$	1	M; 43 yo	2nd DMA	1	180°	Trauma	Index finger	Elliptical; $8 \times 1.5 \mathrm{~cm}$	6	Partial flap necrosis
Kosutic D, (21)	1	M; 24 yo	TAA	1	180°	Scar contracture	Upper arm, axilla and lateral thoracic region	Elliptical, based on two dominant perforators	Not specified	None
Jiga LP, (82)		$\begin{gathered} 4 \mathrm{~F} \text { and } 1 \mathrm{M} ; \\ \text { age range }=59-79 \\ \text { yo }(\text { mean }=71 \text { yo }) \end{gathered}$	$\begin{aligned} & 5 \mathrm{PA}, \\ & 1 \text { PTA } \end{aligned}$	6	Up to 180°	PAOD	1 Medial leg, 1 lateral malleolus, 3 heel	$\begin{aligned} & \text { From } 4 \times 7 \mathrm{~cm} \\ & \text { to } 8 \times 31 \mathrm{~cm} \end{aligned}$	6	Complete flap necrosis, below-knee amputation needed (1 pt) Partial flap necrosis, skin graft needed (1 pt) Edema, resolved spontaneously (5 pts)
Woo KJ, (41)	1	M, 40 yo	DSEA	1	180°	Tumor excision	Upper abdomen	Elliptical; $20 \times 10 \mathrm{~cm}$	Not specified	None
Rezende MR, (83)	21	$\begin{gathered} 5 \mathrm{~F} \text { and } 16 \mathrm{M} \text {; } \\ \text { age range }=19-80 \\ \text { yo (mean= }=40 \text { yo) } \end{gathered}$	$\begin{gathered} 9 \mathrm{FA}, \\ 10 \mathrm{PTA}, \\ 5 \text { ATA } \end{gathered}$	21	$\begin{array}{r} 19180^{\circ}, \\ 2120^{\circ} \end{array}$	Skin injuries (not specified)	4 Middle third of leg, 17 distal third of leg	From $3 \times 6 \mathrm{~cm}$ to $9 \times 15 \mathrm{~cm}$	Not specified	Skin graft needed to close donor site (18 pts)
Sinna R, (40)	1	F; 57 yo	Not specified	2	90°	Tumor excision	Perineum	L-shaped	2	None
Schaverien MV, (84)	$\text { I, } 100$	$\begin{gathered} 25 \mathrm{~F} \text { and } 75 \mathrm{M} \text {; } \\ \text { age range }=9-90 \\ \text { yo (mean= } \\ 47.2 \text { yo) } \end{gathered}$	PTA	106	$\begin{gathered} 60^{\circ}-180^{\circ} \\ (\text { mean } \\ 160^{\circ} \text {) } \end{gathered}$	63 Trauma, 15 chronic osteomyelitis, unstable scar, burn scar contractures	72 Lower third of the leg, 10 ankle, heel, foot	Elliptical	18	Complete flap necrosis, required 6 free muscle flap transfer and 3 below knee amputation (9 pts) Partial flap necrosis, all managed conservatively except one that needed an adipo-fascial transposition flap (12 pts) Osteomyelitis (5 pts) Dehiscence (9 pts) Wound infection (8 pts) Hematoma (4 pts)
Teo TC, (116)	130	Not s pecified	Not specified	130	$90^{\circ}-180^{\circ}$ (more than $\left.2 / 3180^{\circ}\right)$	100 Trauma, tumor excision, chronic infection, pressure sore, chronic leg ulcer	Trunk, upper and lower limbs	The biggest $21 \times 10 \mathrm{~cm}$; the longest 31×5	Not specified	Complete flap necrosis, required another flap (3 pts)
Jakubietz RG, (117)	9	$\begin{gathered} 1 \mathrm{~F} \text { and } 8 \mathrm{M} \text {; } \\ \text { age range }=14-72 \\ \text { yo (mean= } \\ 56.1 \text { yo) } \end{gathered}$	3 PTA, 1 ATA, 3 PA	7	$90^{\circ}-180^{\circ}$	1 Trauma, 1 burn, 5 wound dehiscence	Achilles tendon	2 Local rotational flaps, 5 elliptical; from $4 \times 7 \mathrm{~cm}$ to $5 \times 24 \mathrm{~cm}$	Not specified	Failure to find a useful perforator (2 pts) Skin graft needed to close donor site (4 pts) Partial flap necrosis (1 pt) Complete flap necrosis (1 pt)

Table II. Continued

Table II. Continued

First Author, (Ref \#)	N° of pts	Demographic Data	Vascular territory	N° of p. flaps	Angle of rotation	Indication	Defect location	Flap shape and size	Follow-up in months	Complications
Ono S, (48)	13	$\begin{gathered} 6 \mathrm{~F} \text { and } 7 \mathrm{M} ; \\ \text { age range= } \\ 15-63 \text { yo } \\ (\text { mean }=38.5 \text { yo }) \end{gathered}$		16	$90^{\circ}-180^{\circ}$	5 Keloid, 2 burn scar contractures, 1 tumor excision, 1 pilonidal	4 Chest, 1 axilla, 1 vulva, 1 buttocks, 1 lower leg, 1 ankle,	12 Elliptical, 3 bilobed, 1 quadrilobed; from $3.5 \times 2 \mathrm{~cm}$ to 27 x 8 cm	Not specified	Skin graft needed to lose donor site (2 pts) Partial flap necrosis (1 pt)
Hosny H, (22)	8	$\begin{gathered} 5 \mathrm{~F} \text { and } 3 \mathrm{M} ; \\ \text { age range }= \\ 18-44 \text { yo } \\ (\text { mean }=28.7 \text { yo }) \end{gathered}$	Not specified	8	45°	cyst, 4 ulcer Burn scar contracture	3 calcaneus 5 Elbow, 3 first web ace of the han	Eight-limb modified propeller	$\begin{gathered} 6-18 \\ \text { (mean } 12,5 \text {) } \end{gathered}$	Venous congestion, resolved spontaneously (1 pt) Skin graft needed to close donor site (2 pts) Partial flap necrosis (1 pt)
Go JY, (43)	1	F; 57 yo	DIEA	1	180°	Wound dehiscence after tumor excision	Antero- lateral chest wall	Elliptical	12	Seroma under the flap, evacuated and minimal debridement in the area of flap necrosis
Youn S, (17)	1	M; 50 yo	RAA	1	90°	Trauma	Ear	Rectangular, $3 \times 2.5 \mathrm{~cm}$	Not specified	Venous congestion
Higueras Suñé MC, (44)	11	$\begin{gathered} 6 \mathrm{~F} \text { and } 5 \mathrm{M} \text {; } \\ \text { age range= } \\ 40-85 \text { yo } \\ (\mathrm{mean}=64.1 \text { yo }) \end{gathered}$	$\begin{gathered} 2 \text { IPA, } \\ 1 \text { LCFA, } \\ 7 \text { PA, } \\ 1 \text { PTA } \end{gathered}$	11	Not specified	3 Osteitis, 6 tumor excision, 2 trauma	2 Perineum, 1 knee, 4 distal third of leg, 2 malleolus, 2 Achilles tendon	$\begin{aligned} & \text { Mean size } \\ & 5.2 \times 5.7 \mathrm{~cm} \end{aligned}$	Not specified	Skin graft needed to close donor site (7 pts) Partial flap necrosis, skin graft needed (3 pts)
Ono S, (23)	12	$2 \mathrm{~F}, 10 \mathrm{M}$; age range $=25-70$ yo (mean= 49.1 yo)	$\begin{gathered} 1 \text { SUCA, } \\ 1 \text { RRA, } \\ 3 \text { RCA, } \\ 1 \text { BA, } \\ 3 \text { UA, } \\ 3 \text { RA } \end{gathered}$	12	$\begin{gathered} \text { From } 90^{\circ} \\ \text { to } 180^{\circ} \\ (\text { mean } \\ 145,8^{\circ} \text {) } \end{gathered}$	4 Burn scar contracture, 3 trauma, 2 excision of olecranon bursa, 1 electrical burn, 1 radiation dermatitis, 1 olecranon implant exposure	6 Elbow, 6 wrist or hand	9 Elliptical, 1 quadrilobed, 2 bilobed; the smallest 8 x 4 cm ; the largest $18.0 \times 5.5 \mathrm{~cm}$ (mean size= $12.2 \times 4.7 \mathrm{~cm}$)	Not specified	Partial flap necrosis, required abdominal flap (1 pt) Skin graft needed to close donor site (1 pt)
Ziegler K, (50)	1	F; 46 yo	SEA	1	90°	Tumor excision	Chest	Elliptical; $21 \times 12 \mathrm{~cm}$	3	Skin graft needed to close donor site
Tos P, (91)	22	$\begin{gathered} 11 \mathrm{~F} \text { and } 11 \mathrm{M} ; \\ \text { age range }= \\ 22-86 \text { yo } \\ (\text { mean }=56.5 \text { yo }) \end{gathered}$	$\begin{gathered} 6 \mathrm{PA}, \\ 13 \mathrm{PTA}, \\ 1 \mathrm{GA}, \\ 1 \mathrm{LCFA}, \\ 1 \mathrm{DFA} \end{gathered}$	22	$\begin{gathered} \text { From } 80^{\circ} \\ \text { to } 180^{\circ} \\ (\text { mean } \\ \left.142,3^{\circ}\right) \end{gathered}$	6 Tumor excision, 7 postsurgical wound defect, 5 trauma, 3 pressure sore, 1 chronic osteomyelitis	7 Achilles tendon, 1 thigh, 7 leg, 1 groin, 2 foot, 1 ankle, 2 heel, 1 knee	From $3 \times 5 \mathrm{~cm}$ to $25 \times 15 \mathrm{~cm}$	6	Venous congestion (3 pts) Complete flap necrosis (2 pts) Secondary skin graft needed to treat complications (3 pts) Epidermolysis (5 pts) Transient edema (n° not specified) Prolonged (6 mo) leg edema with spontaneous resolution (1 pt)
Ogawa R, (47)	1	M; age not specified	Not	specified	d 1	135°	Keloid	Breastbone	Elliptical	18 None

Table II. Continued

Table II. Continued

First Author, (Ref \#)	N° of pts	Demographic Data	Vascular territory	N° of p. flaps	Angle of rotation	Indication	Defect location	Flap shape and size	Follow-up in months	Complications
Gobel F, (88)	3	$\begin{gathered} 1 \mathrm{~F} \text { and } 2 \mathrm{M} \text {, } \\ \text { age range= } \\ 50-75 \text { yo } \\ \text { (mean }=65 \text { yo) } \end{gathered}$	$2 \text { SMGA, }$ $1 \text { SLGA }$	3	180°	Not specified	Knee	Elliptical; from 8 x 4 cm to 18 x 9 cm	3	Perforator cut during a first incision, another flap needed (1 pt) Partial-flap necrosis, required debridement (1 pt) Venous congestion (1 pt)
D'Arpa S, (10)	85	$\begin{gathered} 20 \mathrm{~F} \text { and } 65 \mathrm{M} \text {; } \\ \text { age range= } \\ 40-92 \text { yo } \\ \text { (mean }=76 \text { уo) } \end{gathered}$	18 FACA, 11 STA, 2 PAA, 1 TCA, 1 LICA, 5 TDA, 1 AICA, 4 SEA, 1 PICA, 4 UA, 1 RA, 1 DMA, 1 LCFA, 1 SGA, 7 PTA, 4 PA	63	$\begin{gathered} 57180^{\circ}, \\ 690^{\circ} \\ (\text { mean } \\ \left.171,4^{\circ}\right) \end{gathered}$	43 tumor excision, 4 benign lesions excision, 4 Port-A-Cath exposure, 1 pressure sore, 10 trauma, 1 sternotomy wound dehiscence	23 nose, 1 retroauricular region, 2 neck, 3 upper lip, 1 cheek, 2 lower lip, 6 breast, 2 pre-sternal, 1 scapula, 2 axilla, 1 lower back, 5 forearm, 1 dorsal fifth finger of the hand, 1 groin, 1 sacrum, 11 lower third of the leg	$\begin{gathered} \text { From } \\ 0.5 \times 0.7 \mathrm{~cm} \text { to } \\ 24 \times 12.5 \mathrm{~cm} \end{gathered}$	3	Partial flap necrosis (3 pt) Arterial insufficiency, de-rotation needed (1 pt) Complete flap necrosis (1 pt) Infection of the donor site (1 pt)
Unal C, (49)	12	12 M ; age range $=24-56$ yo (mean= 44.4 уо)	$\begin{gathered} \text { e } 8 \text { SGA, } \\ 4 \text { IGA } \end{gathered}$	17	Not specified	Chronic suppurativehidradenitis	Gluteus and perianum	Not specified	$\begin{gathered} 8-36 \\ (\text { mean } 20 \text {) } \end{gathered}$	Dehiscence (1 pt) Completeflap necrosis (1 pt)
Chang SM, (87)	1	M; 28 yo	TA	1	135°	Open Achilles tendon rupture with overlying skin flap necrosis	Leg	Elliptical	Not specified	None
Bajantri B, (85) Oh TS, (53)	1 11	$\begin{gathered} \mathrm{M} ; 22 \text { yo } \\ 5 \mathrm{~F} \text { and } 6 \mathrm{M} ; \\ \text { age range }= \\ 18-69 \text { yo } \\ \text { (mean=49 yo) } \end{gathered}$	Not specified 5 PICA, 3 TDA, 3 LA	1 11	Not specified Up to 180°	Trauma 10 Tumor excision, 1 pressure sore	Leg 10 Posterior trunk, 1 flank	Not specified Not specified	Not specified 8,2	Skin graft needed to close donor site Venous congestion (5 pts)
Schmidt VJ, (57)	1	F; 16 h-old	SGA	1	160°	Meningomyelocele	Lower back	Elliptical	28	None
Cordova A, (8)	15	$\begin{gathered} 5 \mathrm{~F} \text { and } 10 \mathrm{M} \text {; } \\ \text { age range }= \\ 62-94 \text { yo } \\ (\text { mean }=75 \text { yo) } \end{gathered}$	STA	15	$180^{\circ} \mathrm{T}$	Tumor excision	Nose	Not specified	6	None
Kosutic D, (51)	1	M; 23 yo	CSA	1	160°	Burn scar contractures	Axilla	Elliptical	1	None
$\begin{aligned} & \text { Mateev MA, } \\ & \text { (24) } \end{aligned}$	25	$\begin{gathered} 6 \mathrm{~F} \text { and } 19 \mathrm{M} \text {; } \\ \text { age range }=8-61 \\ \text { yo (mean= } \\ 32.2 \text { yo) } \end{gathered}$	5 UA, 4 RA, 2 DCA, 2 DMA, 1 SUCA, 8 PTA or PA,	25	Up to 180°	Burn scar or trauma	7 Hand, 6 forearm, 1 arm, 9 distal part of leg, 1 proximal	Elliptical; from $4 \times 3 \mathrm{~cm}$ to $21 \times 6 \mathrm{~cm}$	Not specified	Complete flap necrosis caused by venous congestion, free scapular flap needed (1 pt) Partial flap necrosis,

Table II. Continued

Table II. Continued

Table II. Continued

Table II. Continued

First Author, (Ref \#)	$\begin{gathered} \mathrm{N}^{\circ} \text { of } \\ \mathrm{pts} \end{gathered}$	Demographic Data	Vascular territory	N° of p. flaps	Angle of s rotation	Indication	Defect location	Flap shape and size	Follow-up in months	Complications
Panse N, (30)	62	$\begin{gathered} 24 \mathrm{~F} \text { and } 38 \mathrm{M} \text {; } \\ \text { age range }=9-51 \\ \text { yo (mean }=34 \text { yo) } \end{gathered}$	7 UDA, 9 IOA, 15 UA, 20RA, 3 RUA, 2 RRA, 3 BA, 4 AXA	63	$\begin{aligned} & \text { From } 90^{\circ} \\ & \text { to } 180^{\circ} \end{aligned}$	31 Trauma, 30 burn sequel, 2 post snake bite defects	Upper limb	Not specified	1-6	Complete flap necrosis (4 pts) Partial flap necrosis (4 pts) 2nd operation needed (7 pts)
Hallock GG, (101)	2	$\begin{gathered} 2 \mathrm{M} ; 31 \text { and } \\ 45 \text { yo } \\ \text { (mean=38 yo) } \end{gathered}$	FDMA	2	Not specified	1 Infected callus, 1 benign tumor	Toe	Elliptical; $2.5 \times 8 \mathrm{~cm}$ and $1.6 \times 5 \mathrm{~cm}$	9 and 12	Recurrent callus (1 pt)
Valentin GA, (111)	7	$\begin{gathered} 1 \mathrm{~F} \text { and } 6 \mathrm{M} \text {; } \\ \text { age range= } \\ 59-78 \text { yo } \\ (\text { mean }=64.7 \text { yo) } \end{gathered}$	PDA	7	$\begin{gathered} 390^{\circ}, 4 \\ 180^{\circ} \\ (\text { mean } \\ \left.141^{\circ}\right) \end{gathered}$	2 Neuropathy, 3 diabetic ulcer, 1 trauma, 1 diabetes mellitus + trauma	Plantar forefoot	Not specified	$\begin{gathered} 7-17 \\ \text { (mean 9,8) } \end{gathered}$	Delayed healing (1 pt)
Zang M, (71)	1	F; 66 yo	BA	1	180°	Radiation ulcer	Chest wall	$15 \times 6 \mathrm{~cm}$	1	Skin graft needed to reduce tension in donor site area
Rout DK, (31)	1	M; 25 yo	TAA	1	Not specified	High voltage electric burn	Shoulder and arm	Not specified	12	Venous congestion
$\begin{aligned} & \text { Angrigiani C, } \\ & \text { (63) } \end{aligned}$	17	$\begin{gathered} 17 \mathrm{~F} \text {; age } \\ \text { range=38-66 yo } \\ \text { (mean=55.1 yo) } \end{gathered}$	TDA	19	180°	Not specified	Breast	From $28 \times 7 \mathrm{~cm}$ to $36 \times 8 \mathrm{~cm}$	4-48	Partial flap necrosis (2 pts) Wound dehiscence (2 pts)
Corradino B, (65)	1	F; 61 yo	Not specified	1	90° cu	Fistula with a utaneous opening	Sternum	Elliptical; major transversal axis 9 cm	48	None
Artiaco S, (28)	21	$\begin{gathered} 8 \mathrm{~F} \text { and } 13 \mathrm{M} ; \\ \text { age range= } \\ 22-86 \text { yo } \\ (\text { mean }=54.5 \text { yo) } \end{gathered}$	$\begin{gathered} 3 \mathrm{RA}, \\ 2 \mathrm{DMA}, \\ 2 \text { SUCA, } \\ 7 \text { PTA, } \\ 3 \mathrm{PA}, \\ 2 \mathrm{LCFA}, \\ 1 \mathrm{GA}, \\ 1 \mathrm{ATA} \end{gathered}$	21	Not specified	9 Tumor excision, 7 trauma, 4 surgical wound complications, 1 chronic osteomyelitis	2 Elbow, 3 dorsal aspect of the hand, 2 hand finger; 3 thigh, 11 leg or ankle	From 1x5 cm to 7 x 8 cm in the upper limb; from $10 \times 3 \mathrm{~cm}$ to $25 \times 15 \mathrm{~cm}$ in the lower limb.	Not specified	Epidermolysis, resolved spontaneously (4 pts) Partial flap necrosis (3 pts) Skin graft needed to close donor site (2 pts) ALT free flap needed (1 pt)
Horta R, (102)	1	M; 50 yo	PTA	1	90°	Open fracture	Tibia	2 Perforators	Not specified	Skin graft needed to close donor site
Zheng HP, (115)) 5	$\begin{gathered} \text { Sex not } \\ \text { specified, } \\ \text { age range }= \\ 21-58 \text { yo } \\ \text { (mean }=37 \text { yo) } \end{gathered}$	DGA	5	180°	1 Tumor excision, 4 trauma	3 Distal anteromedial thigh, 2 knee	From $\begin{aligned} & 6.0 \times 7.1 \mathrm{~cm} \\ & \text { to } 11.0 \mathrm{x} \\ & 20.1 \mathrm{~cm} . \end{aligned}$	$\begin{gathered} 6-9 \\ \text { (mean } 7,4 \text {) } \end{gathered}$	Tension blister (1 pt)
Zang M, (33)	2	1 F and 1 M ; 35 and 60 yo (mean=47.5 yo)	Not specified	2	180°	1 Nevi resection, 1 tumor excision	Elbow	Elliptical, $17 \times 8 \mathrm{~cm}$ and $11 \times 7 \mathrm{~cm}$	15 and 18 (mean 16,5)	Venous congestion and excessive skin tension over the pedicle, released by removing several sutures (1 pt)
Vaienti L, (110)	8	8 M ; age	PTA	8	From 90°	Soft-tissue	Achilles	2 Round;	15-38	Venous congestion (1
		$\begin{gathered} \text { range }=33-68 \\ \text { yo (mean }=46 \text { yo) } \end{gathered}$			$\begin{gathered} \text { to } 180^{\circ} \\ \left(\text { mean } 144^{\circ}\right) \end{gathered}$) infection	tendon	from $5 \times 4 \mathrm{~cm}$ to $18 \times 5 \mathrm{~cm}$	(mean 21)	Partial flap necrosis (1 pt) Skin graft needed to close donor site (4 pts)
Karki D, (67)	44	$\begin{gathered} 19 \mathrm{~F} \text { and } 25 \mathrm{M} ; \\ \text { mean age }= \\ 17.1 \text { yo } \end{gathered}$	Not specified	12	90°	Burn scar contractures	Axilla	Not specified	12	None

Table II. Continued

First Author, (Ref \#)	N° of pts	Demographic Data	Vascular territory	N° of p. flaps	Angle of rotation	Indication	Defect location	Flap shape and size	Follow-up in months	Complications
Ruiz-Moya A, (14)	12	$\begin{gathered} 5 \mathrm{~F} \text { and } 7 \mathrm{M} ; \\ \text { age range }= \\ 53-82 \text { yo } \\ (\text { mean }=70.2 \text { yo) } \end{gathered}$	FACA	12	$120^{\circ}-180^{\circ}$	Tumor excision	Nasolabial and perinasal region	$\begin{gathered} \text { From } \\ 3.5 \times 3.2 \mathrm{~cm} \\ \text { to } 5 \times 2 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 12-18 \\ \text { (mean } 13,8 \text {) } \end{gathered}$	Partial flap necrosis (1 pt) Venous congestion, spontaneously resolved (1 pt) Trapdoor deformity (2 pts) Malar lymphedema (1 pt)
Scaglioni MF, (75)	1	M; 65 yo	DSEA	1	90°	Tumor excision	Upper abdomen	Elliptical; $15 \times 6 \mathrm{~cm}$	37	None
Ayestaray B, (72)	1	F; 60 yo	SGA	1	100°	Tumor excision and radio-chemotherapy	Posterior vaginal wall	$8 \times 26 \mathrm{~cm}$	12	Small sinus formation at caudal part of the flap after complete healing
Sekiguchi H, (35)	1	M, 58 yo	BA	1	180°	Trauma	Elbow	$14,5 \times 6 \mathrm{~cm}$	11	None
Gunnarsson (34)	34	$\begin{gathered} 18 \mathrm{~F} \text { and } 16 \mathrm{M} ; \\ \text { age range }= \\ 37-93 \text { yo } \\ (\text { mean }=64.6 \text { yo) } \end{gathered}$	Not specified	34	$\begin{gathered} 2290^{\circ}, \\ 12180^{\circ} \\ \text { (mean } 122^{\circ} \text {) } \end{gathered}$	26 tumor excision, 6 scar correction, 4 chronic wound or trauma	13 lower limb, 11 upper limb, 10 trunk	$\begin{gathered} \text { From } \\ 1,5 \times 3 \mathrm{~cm} \\ \text { to } 12 \times 22 \mathrm{~cm} \end{gathered}$	Not specified	Partial flap necrosis (7 pts)
Acartürk TO, (112)	2	$\begin{gathered} 2 \mathrm{~F} ; 23 \text { and } \\ 45 \text { yo } \\ \text { (mean=34 yo) } \end{gathered}$	PA	2	Not specified	Trauma	Calcaneus and Achilles tendon	$\begin{gathered} 12 \times 6 \mathrm{~cm} \\ \text { and } 14 \times 6 \mathrm{~cm} \end{gathered}$	19	None
Kang JS, (113)	1	M; 45 yo	PTA	1	180°	Pressure sore	Lower third of leg	Not specified	3	Skin graft needed to close donor site
Cordova A, (9)	23	$\begin{gathered} 8 \mathrm{~F} \text { and } 15 \mathrm{M} \text {; } \\ \text { age range= } \\ 43-82 \text { yo } \\ (\text { mean }=65 \text { yo) } \end{gathered}$	DLA	23	180°	Tumor excision	Oral cavity	$\begin{aligned} & \text { From } \\ & 4.2 \times 3.7 \mathrm{~cm} \\ & \text { to } 6.5 \times 4.5 \mathrm{~cm} \end{aligned}$	12	Infection of the neck soft tissues (1 pt)
Park SW, (74)	18	$\begin{gathered} 8 \mathrm{~F} \text { and } 10 \mathrm{M} \text {; } \\ \text { age range }= \\ 18-80 \text { yo } \\ (\text { mean }=53.2 \text { yo }) \end{gathered}$	Not specified	26	$90^{\circ}-180^{\circ}$	13 Tumor excision, 1 infection, 2 wound dehiscence from previous surgery, 1 pressure sore, 1 burn	Back	Not specified	4-86 (17,3)	Venous congestion (7 pts)
Børsen-Koch $\mathrm{M},(121)$	38	$\begin{gathered} 38 \mathrm{~F} \text {; age } \\ \text { range }=38-73 \\ \text { yo (mean } \\ \text { age }=53 \text { yo) } \end{gathered}$	TDA	43	$150^{\circ}-160^{\circ}$	Tumor excision	Breast	Not specified	$\begin{gathered} 7-26 \\ \text { (mean } 12,5 \text {) } \end{gathered}$	Hematoma (1 pt) Partial flap necrosis (8 pt) Venous congestion (1
pt)										
Zang M, (76)	7	$\begin{gathered} 3 \mathrm{~F} \text { and } 4 \mathrm{M} \text {; } \\ \text { age range= } \\ 19-52 \text { yo } \\ (\text { mean }=34.9 \text { yo }) \end{gathered}$	4DLICA, 3 LICA, 1 DICA, 1 AICA, 1 DIEA, 1 SEA, 1 SCIA	12	$\begin{aligned} & 5 \quad 180^{\circ}, \\ & 4150^{\circ} \end{aligned}$	Tumor excision	2 Back, 2 chest, 1 abdomen, 2 lumbar	1 With 2 perforators; from $6 \times 6 \mathrm{~cm}$ to $30 \times 20 \mathrm{~cm}$ (mean $9.4 \times 21.2 \mathrm{~cm})$	Not specified	Partial flap necrosis, required debridement and another flap (3 pts)
Brunetti B, (73)	9	$\begin{gathered} 6 \mathrm{~F} \text { and } 3 \mathrm{M} \text {; } \\ \text { age range }= \\ 45-76 \text { yo } \\ (\text { mean }=63.4 \text { yo }) \end{gathered}$	ICA	9	180°	Tumor excision	Trunk	From 4 x 9 cm to $6 \times 13 \mathrm{~cm}$	$\begin{gathered} 3-24 \\ \text { (mean } 15,7 \text {) } \end{gathered}$	None

Table II. Continued

First Author, (Ref \#)	N° of pts	Demographic Data	Vascular territory	N° of p. flaps	Angle of rotation	Indication	Defect location	Flap shape and size	Follow-up in months	Complications
Zhong W, (114)	15	$\begin{gathered} 4 \mathrm{~F} \text { and } 11 \mathrm{M} ; \\ \text { age range= } \\ 22-58 \text { yo } \\ (\text { mean }=39 \text { yo) } \end{gathered}$	PTA	15	180°	$\begin{gathered} 15 \\ \text { Trauma } \end{gathered}$	Lower limb	From $8 \times 4 \mathrm{~cm}$ to 17 x 8 cm	$\begin{gathered} 11-22 \\ \text { (mean } 15,3 \text {) } \end{gathered}$	Partial flap necrosis (2 pts) Infection (1 pt)

AICA, Anterior intercostal artery; ALT, anterolateral thigh; ATA, anterior tibial artery; AXA, axillary artery; BA, brachial artery; CRA, collateral radial artery; CSA, circumflex scapular artery; d, days; DBA, deep brachial artery; DCA, dorsal carpal artery; DFA, deep femoral artery; DGA, descending genicular artery; DICA, dorsal intercostal artery; DIEA, deep inferior epigastric artery; DLA, deep lingual artery; DLICA, dorso-lateral intercostal artery; DMA, dorsal metacarpal artery; DPA, dorsalis pedis artery; DSEA, deep superior epigastric artery; F, female; FA, femoral artery; FACA, facial artery; FDMA, first dorsal metatarsal artery; GA, genicular artery; ho, hours old; HT, hospitalisation time; ICA, intercostal artery; IGA, inferior gluteal artery; IOA, anterior interosseous artery; IMA, internal mammary artery; IPA, internal pudendal artery; ITA, internal thoracic artery; LA, lumbar arteries; LCFA, lateral circumflex femoral artery; LICA, lateral intercostal artery; LMA, lateral malleolar artery; LNA, lateral nasal artery; LPCA, lateral popliteal cutaneous artery; LTA, lateral thoracic artery; M, male; MA, metatarsal artery; mo, months; MPA, medial plantar artery; MSGA, medial superior genicular artery; p. flaps, propeller flaps; PA, peroneal (fibular) artery; PAA, posterior auricularartery; PAOD, peripheral arterial obstructive disease; p.com., personal communication; PDA, plantar digital artery; PICA, posterior intercostal arteries; PNA, perineal artery; pt, patient; PTA, posterior tibial artery; pts, patients; RA, radial artery; RAA, retroauricular artery; RCA, radial collateral artery; RRA, recurrent radial artery; RUA, recurrent ulnar artery; SA, saphenous artery; SCA, superficial cervical artery; SCIA, superficial circumflex iliac artery; SEA, superiorepigastric artery; SGA, superior gluteal artery; SIEA, superficial inferior epigastric artery; SLA, superior labial artery; SLGA, superior lateral genicular artery; SMGA, superior medial genicular artery; STA, supratrochlear artery; SUCA, superior ulnar collateral artery; TA, tibial artery; TAA, thoraco-acromial artery; TCA, transverse cervical artery; TDA, thoraco-dorsal artery; UA, ulnar artery; UDA, ulnar digital artery; VAC, vacuum assisted closure; y, year/years; yo, years old.

In 2014, De Blacam et al. (125) performed a literature review on the distally based sural flap (Table VI). Comparing our results on lower limb, distally based sural flap showed significantly lower complication rate and flap loss rate than propeller flaps. As reported by D'Arpa et al., "free flaps are still the gold-standard for large defects in lower limb, but propeller perforator flaps are an appealing option for small and medium defects", especially at the level of the lower leg and foot $(122,126)$. Our results match those by Nelson et al. who found a 5.5% total flap loss rate and an 11.6% partial loss rate in the lower limb (127). Schaverien et al., using the islanded posterior tibial artery perforator flap to reconstruct lower limb defects, identified cigarette smoking, diabetes and peripheral vascular disease as important risk factors for partial and complete flap failure. They found that the complete and partial flap failure rate was reduced from 8.5 to 2.5% and from 12 to 5%, respectively (84), excluding, however, patients who were smokers or had diabetes or peripheral vascular disease.

In relation to functionality and aesthetics, propeller flaps showed good satisfaction rates among both patients and surgeons, especially for the ability to reconstruct in a singlestage procedure. Preserving the underlying muscle provides lower donor site morbidity, preservation of functionality and reduced hospitalization time. Korambayil et al. reported a high rate of loss of sensation using propeller flaps for sacral and ischial soft tissue reconstruction (39); in our review, we only found 9 cases (0.7%) reporting loss of sensation/ numbness/paraesthesia.

Table III. Trend of complication rate in the articles published from 2005 to April 2015.

Year	N° of patients reported	N° of patients with complications	Complication rate
2005	13	1	7.7%
2006	11	0	0%
2007	16	4	25.0%
2008	14	10	71.4%
2009	11	4	36.4%
2010	315	72	22.8%
2011	172	38	22.1%
2012	115	24	20.9%
2013	77	18	23.4%
2014	386	93	24.1%
2015 (until April)	110	17	15.4%

In infants and elderly patients, we observed a higher complication rate that could rely on worsening vascularization, comorbidities and dehydration. During the last years, there was not a reduction of the complication rate despite the increasing use of this technique. However, this statement has to be verified in further studies due to the heterogeneity of the publications included in this study.

In fact, the limitation of this work is the lack of standardization of patients' data of the studies included. Moreover, the absence of comprehensive studies about other

Table IV. Advantages and disadvantages of using propeller flaps as a reconstructive technique.
Advantages of using propeller flaps as reconstructive technique Disadvantages of using propeller flaps as reconstructive technique

Short operating and hospitalization time
Single-stage procedure
No microsurgical anastomosis required
Preoperative detection of the best perforators
assures good safety of perfusion
No need of particular staff expertise or complex logistic setup
Possibility of reconstructing "like with like":
(donor site and recipient area are made of the same tissue)
Great freedom in choosing design, shape and dimensions
High mobility of the flap, allowing rotation up to 360°
(180° clockwise and 180° counterclockwise)
Theoretical application in all body areas, where
a useful perforator can be found
The rotation of the flap allows partial coverage of the
donor site as the remaining part can be sutured directly most of the times
No sacrifice of muscles, fascia, nerves, source vessels or any unnecessary tissue (except for complex reconstructions) with preservation of function

Inability to cover large skin defects
Occurrence of tension in the donor site and torsion of the perforator artery State of the tissues surrounding the loss of substance and future need for secondary surgeries must be considered
The perforator artery must be carefully skeletalized from the surrounding tissues, such as side branches or fibrous bands
Preoperative investigation of vascularization is always indicated due to multiple anatomical variants of the perforator vessels: at least two suitable perforators should be detected, giving the surgeon an alternative plan in case of issue
The identification of perforators by Doppler examination can lead to possible false-positive and false-negative results, especially in areas where source vessels have a superficial location, as in the lower limb The 180-degree rotation allows maximal coverage of the donor-site defect for this technique but is also related to a higher complication rate due to the risk of twisting or kinking the pedicle if not of a proper length Although rarely (in our series, 0.4%), sometimes a useful perforator artery cannot be identified

Table V. Comparison between Zhang et al.'s experience (124) and our results.

	Microsurgical free flaps for head and neck defects (Zhang et al. (124))	Propeller flaps
Population	4,640 flaps	12 articles on head and neck $/ 171 \mathrm{flaps}$
Complications rate (minor plus major complications)	10.42%	15.7%
Success rate	$91.9-98.2 \%$	100%
Most frequent complication	Venous congestion	Venous congestion
Notes	In this area, no skin graft was needed to close donor site thanks to the small dimensions of the flaps (mean size $\left.=17.2 \mathrm{~cm})^{2}\right)$	

Table VI. Comparison between De Blacam et al.'s review (125) and our results.

	Distally based sural flap, as described by De Blacam et al. (125)	Propeller flaps
Population	61 papers/907 patients (pts)	48 articles on lower limb/613 pts
Most frequent involved areas	Heel, foot, ankle	Lower third of leg, knee, foot
Most common indications	Trauma, ulcers, open fractures	Trauma, tumor excision, peripheral arterial obstructive disease, osteomyelitis
Complications' rate	26.4\%	31.8\%
Flap loss rate	3.2\%	4.0\%
Notes	Venous insufficiency and increasing age were independent risk factors for complications	Donor site could not be closed directly in 21.9% of cases probably due to the large dimensions of the defect to treat and the paucity of local tissues available for reconstruction

Figure 1. Trend of complication rate according to age as it stems from the publications of the web-based search.
techniques prevents us to perform a significant comparison of results.

Conclusion

Indications for propeller flaps are small- or medium-sized defects located in a well-vascularized area with healthy surrounding tissues. This reconstructive technique can be performed with a single-stage approach. More than vascularity and traditional length/width ratios, the most important factors to consider are the quality and volume of the soft tissue transferred, scar orientation and, above all, proper planning of the flap, in order to allow direct donor site closure without tension in the area.

When these indications were respected, propeller flaps showed great success rate with low morbidity, quick recovery, good aesthetic outcomes and reduced cost.

A comparison between the aesthetic results using propeller flaps and other reconstructive techniques has to be verified in further studies.

Conflicts of Interest

None.

Funding

None.

References

1 Pignatti M, Ogawa R, Hallock GG, Mateev M, Georgescu AV, Balakrishnan G, Ono S, Cubison TC, D'Arpa S, Koshima I and Hyakusoku H: The "Tokyo" consensus on propeller flaps. Plast Reconstr Surg 127(2): 716-722, 2011.
2 Hyakusoku H, Yamamoto T and Fumiiri M: The propeller flap method. Br J Plast Surg 44(1): 53-54, 1991.
3 Blondeel PN, Van Landuyt KH, Monstrey SJ, Hamdi M, Matton GE, Allen RJ, Dupin C, Feller AM, Koshima I, Kostakoglu N and Wei FC: The "Gent" consensus on perforator flap terminology: preliminary definitions. Plast Reconstr Surg 112(5): 1378-1383; quiz 1383, 1516; discussion 1384-1377, 2003.
4 Hallock GG. The propeller flap version of the adductor muscle perforator flap for coverage of ischial or trochanteric pressure sores. Ann Plast Surg 56(5): 540-542, 2006.
5 Murakami M, Hyakusoku H and Ogawa R: The multilobed propeller flap method. Plast Reconstr Surg 116(2): 599-604, 2005.

6 Bravo FG and Schwarze HP: Free-style local perforator flaps: concept and classification system. J Plast Reconstr Aesthet Surg 62(5): 602-608; discussion 609, 2009.

7 Cordova A, D'Arpa S, Massimiliano T, Toia F and Moschella F: A propeller flap for single-stage nose reconstruction in selected patients: supratrochlear artery axial propeller flap. Facial Plast Surg 30(3): 332-341, 2014.
8 Cordova A, D'Arpa S and Moschella F: A new one-stage method for nose reconstruction: the supratrochlear artery perforator propeller flap. Plast Reconstr Surg 129(3): 571e573e, 2012.
9 Cordova A, Toia F, D'Arpa S, Giunta G and Moschella F: A new mucosal propeller flap (deep lingual artery axial propeller): the renaissance of lingual flaps. Plast Reconstr Surg 135(3): 584e-594e, 2015.
10 D'Arpa S, Cordova A, Pignatti M and Moschella F: Freestyle pedicled perforator flaps: safety, prevention of complications, and management based on 85 consecutive cases. Plast Reconstr Surg 128(4): 892-906, 2011.
11 Karsidag S, Ozcan A, Sumer O and Ugurlu K: Single-stage ala nasi reconstruction: lateral nasal artery perforator flap. J Craniofac Surg 21(6): 1887-1889, 2010.
12 Kim YJ, Han JK and Lee SI: A subcutaneous pedicled propeller flap: new alternative technique for lower eyelid reconstruction after excision of basal cell carcinoma. J Plast Reconstr Aesthet Surg 65(10): 1434-1436, 2012.
13 Kneser U, Beier JP, Schmitz M, Arkudas A, Dragu A, Schmidt VJ, Kremer T and Horch RE: Zonal perfusion patterns in pedicled free-style perforator flaps. J Plast Reconstr Aesthet Surg 67(1): e9-17, 2014.
14 Ruiz-Moya A, Lagares-Borrego A and Infante-Cossio P: Propeller facial artery perforator flap as first reconstructive option for nasolabial and perinasal complex defects. J Plast Reconstr Aesthet Surg 68(4): 457-463, 2014.
15 Schonauer F, Vuppalapati G, Marlino S, Santorelli A, Canta L and Molea G : Versatility of the posterior auricular flap in partial ear reconstruction. Plast Reconstr Surg 126(4): 1213-1221, 2010.

16 Yoon TH, Yun IS, Rha DK and Lee WJ: Reconstruction of various perinasal defects using facial artery perforator-based nasolabial island flaps. Arch Plast Surg 40(6): 754-760, 2013.
17 Youn S, Kim YH, Kim JT and Ng SW: Successful reconstruction of a large helical rim defect using retroauricular artery perforator-based island flap. J Craniofac Surg 22(2): 635637, 2011.
18 Aslan G, Tuncali D, Cigsar B, Barutcu AY and Terzioglu A: The propeller flap for postburn elbow contractures. Burns 32(1): 112-115, 2006.
19 Hyakusoku H, Ogawa R, Oki K and Ishii N: The perforator pedicled propeller (PPP) flap method: report of two cases. J Nippon Med Sch 74(5): 367-371, 2007.
20 Battiston B, Artiaco S, Antonini A, Camilleri V and Tos P: Dorsal metacarpal artery perforator-based propeller flap for complex defect of the dorsal aspect in the index finger. J Hand Surg Eur Vol 34(6): 807-809, 2009.
21 Kosutic D, Krajnc I, Pejkovic B, Anderhuber F, Solman L, Djukic E and Solinc M: Thoraco-acromial artery perforator 'propeller' flap. J Plast Reconstr Aesthet Surg 63(5): e491-493, 2010.

22 Hosny H and El-Shaer W: The eight-limb modified propeller flap--a safer new technique. Burns 37(5): 905-909, 2011.
23 Ono S, Sebastin SJ, Yazaki N, Hyakusoku H and Chung KC: Clinical applications of perforator-based propeller flaps in
upper limb soft tissue reconstruction. J Hand Surg Am 36(5): 853-863, 2011.
24 Mateev MA and Kuokkanen HO: Reconstruction of soft tissue defects in the extremities with a pedicled perforator flap: series of 25 patients. J Plast Surg Hand Surg 46(1): 32-36, 2012.
25 Murakami M, Ono S, Ishii N and Hyakusoku H: Reconstruction of elbow region defects using radial collateral artery perforator (RCAP)-based propeller flaps. J Plast Reconstr Aesthet Surg 65(10): 1418-1421, 2012.
26 Boucher F, La Marca S, Delay E and Mojallal A: Reconstruction of elbow defect by perforator propeller flap of the brachial region-clinical observation. Ann Chir Plast Esthet 58(4): 277-282, 2013.
27 Chaput B, Faisan D, Espie A, Grolleau JL and Garrido I: Radial collateral artery perforator (RCAP)-based propeller flap: "discussion". Ann Chir Plast Esthet 58(4): 379-381, 2013.
28 Artiaco S, Battiston B, Colzani G, Bianchi P, Scaravilli G, Boux E and Tos P: Perforator based propeller flaps in limb reconstructive surgery: clinical application and literature review. Biomed Res Int 2014: 690649, 2014.
29 Chaput B, Gandolfi S, Ho Quoc C, Chavoin JP, Garrido I and Grolleau JL: Reconstruction of cubital fossa skin necrosis with radial collateral artery perforator-based propeller flap (RCAP). Ann Chir Plast Esthet 59(1): 65-69, 2014.
30 Panse N and Sahasrabudhe P: Free style perforator based propeller flaps: Simple solutions for upper extremity reconstruction! Indian J Plast Surg 47(1): 77-84, 2014.
31 Rout DK, Nayak BB, Choudhury AK and Pati AK: Reconstruction of high voltage electric burn wound with exposed shoulder joint by thoracoacromial artery perforator propeller flap. Indian J Plast Surg 47(2): 256-258, 2014.
32 Wettstein R, Helmy N and Kalbermatten DF: Defect reconstruction over the olecranon with the distally extended lateral arm flap. J Plast Reconstr Aesthet Surg 67(8): 1125-1128, 2014.
33 Zang M, Yu S, Xu L, Zhao Z, Ding Q, Guo L and Liu Y: Freestyle perforator-based propeller flap of medial arm for medial elbow reconstruction. Microsurgery 35(5): 411-414, 2014.
34 Gunnarsson GL, Jackson IT, Westvik TS and Thomsen JB: The freestyle pedicle perforator flap: a new favorite for the reconstruction of moderate-sized defects of the torso and extremities. Eur J Plast Surg 38: 31-36, 2015.
35 Sekiguchi H, Motomiya M, Sakurai K, Matsumoto D, Funakoshi T and Iwasaki N: Brachial artery perforator-based propeller flap coverage for prevention of readhesion after ulnar nerve neurolysis. Microsurgery 35(2): 158-162, 2015.
36 Hyakusoku H, Iwakiri I, Murakami M and Ogawa R: Central axis flap methods. Burns 32(7): 891-896, 2006.
37 Jakubietz RG, Jakubietz MG, Jakubietz DF, Koehler G, Zeplin PH, Meffert RH and Schmidt K: Ischial pressure sores: reconstruction using the perforator-based reverse flow musculocutaneous 180 degrees propeller flap. Microsurgery 29(8): 672-675, 2009.
38 Xu Y, Hai H, Liang Z, Feng S and Wang C: Pedicled fasciocutaneous flap of multi-island design for large sacral defects. Clin Orthop Relat Res 467(8): 2135-2141, 2009.
39 Korambayil PM, Allalasundaram K and Balakrishnan T: Perforator propeller flaps for sacral and ischial soft tissue reconstruction. Indian J Plast Surg 43(2): 151-157, 2010.
40 Sinna R, Benhaim T, Qassemyar Q, Brehant O and Mauvais F: Double L-shaped free-style perforator flap for perineal and
vaginal reconstruction after cylindrical abdominoperineal resection. J Plast Reconstr Aesthet Surg 63(10): 1740-1743, 2010.
41 Woo KJ, Pyon JK, Lim SY, Mun GH, Bang SI and Oh KS: Deep superior epigastric artery perforator 'propeller' flap for abdominal wall reconstruction: A case report. J Plast Reconstr Aesthet Surg 63(7): 1223-1226, 2010.
42 Ang GG, Rozen WM, Chauhan A and Acosta R: The pedicled 'propeller' deep inferior epigastric perforator (DIEP) flap for a large abdominal wall defect. J Plast Reconstr Aesthet Surg 64(1): 133-135, 2011.
43 Go JY, Lim SY, Mun GH, Bang SI, Oh KS and Pyon JK: Recycling delayed perforator flap: deep inferior epigastric artery perforator-based propeller flap from a prior vertical rectus abdominis musculocutaneous flap. J Plast Reconstr Aesthet Surg 64(9): 1238-1241, 2011.
44 Higueras Sune MC, Lopez Ojeda A, Narvaez Garcia JA, De Albert De Las Vigo M, Roca Mas O, Perez Sidelnikova D, Carrasco Lopez C, Palacin Porte JA, Serra Payro JM and Vinals JM: Use of angioscanning in the surgical planning of perforator flaps in the lower extremities. J Plast Reconstr Aesthet Surg 64(9): 1207-1213, 2011.
45 Jakubietz RG, Jakubietz DF, Zahn R, Schmidt K, Meffert RH and Jakubietz MG: Reconstruction of pressure sores with perforator-based propeller flaps. J Reconstr Microsurg 27(3): 195-198, 2011.
46 Kneser U, Beier JP, Dragu A, Arkudas A and Horch RE: Transverse cervical artery perforator propeller flap for reconstruction of supraclavicular defects. J Plast Reconstr Aesthet Surg 64(7): 952-954, 2011.
47 Ogawa R, Akaishi S, Huang C, Dohi T, Aoki M, Omori Y, Koike S, Kobe K, Akimoto M and Hyakusoku H: Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring: the importance of fascial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction. J Nippon Med Sch 78(2): 68-76, 2011.
48 Ono S, Chung KC, Hayashi H, Ogawa R, Takami Y and Hyakusoku H: Application of multidetector-row computed tomography in propeller flap planning. Plast Reconstr Surg 127(2): 703-711, 2011.
49 Unal C, Yirmibesoglu OA, Ozdemir J and Hasdemir M: Superior and inferior gluteal artery perforator flaps in reconstruction of gluteal and perianal/perineal hidradenitis suppurativa lesions. Microsurgery 31(7): 539-544, 2011.
50 Ziegler K, Schmidt M and Huemer GM: A pedicled superior epigastric artery perforator (SEAP-) propeller flap for 2-cavity reconstruction after oncologic rib resection. Microsurgery 31(4): 335-336, 2011.
51 Kosutic D, Potter S and Gulic R: Circumflex scapular perforator propeller flap for axillary reconstruction. Microsurgery 32(3): 251-252, 2012.
52 Nguyen DT and Ogawa R: The sternalis muscle-incidental finding of a rare chest wall muscle variant during keloid excision-chest wall reconstruction. Eplasty 12: e36, 2012.
53 Oh TS, Hallock G and Hong JP: Freestyle propeller flaps to reconstruct defects of the posterior trunk: a simple approach to a difficult problem. Ann Plast Surg 68(1): 79-82, 2012.
54 Ono S, Ogawa R, Eura S, Takami Y and Hyakusoku H: Perforator-supercharged perforator-based propeller flaps. Plast Reconstr Surg 129(5): 875e-877e, 2012.

55 Prasad V and Morris SF: Propeller DICAP flap for a large defect on the back-case report and review of the literature. Microsurgery 32(8): 617-621, 2012.
56 Ruegg EM, Lantieri L and Marchac A: Dual perforator propeller internal mammary artery perforator (IMAP) flap for soft-tissue defect of the contralateral clavicular area. J Plast Reconstr Aesthet Surg 65(10): 1414-1417, 2012.
57 Schmidt VJ, Horch RE, Dragu A, Beier JP, Eyupoglu IY, Hirsch A and Kneser U: Myocutaneous propeller flap based on the superior gluteal artery (SGA) for closure of large lumbosacral meningomyelocoele defects: a case report. J Plast Reconstr Aesthet Surg 65(4): 521-524, 2012.
58 Cheng A and Saint-Cyr M: Use of a pre-expanded "propeller" deep inferior epigastric perforator (DIEP) flap for a large abdominal wall defect. J Plast Reconstr Aesthet Surg 66(6): 851-854, 2013.
59 Iida T, Narushima M, Yoshimatsu H, Mihara M, Kikuchi K, Hara H, Yamamoto T, Araki J and Koshima I: Versatility of lateral cutaneous branches of intercostal vessels and nerves: anatomical study and clinical application. J Plast Reconstr Aesthet Surg 66(11): 1564-1568, 2013.
60 Moon SH, Choi JY, Lee JH, Oh DY, Rhie JW and Ahn ST: Feasibility of a Deepithelialized Superior Gluteal Artery Perforator Propeller Flap for Various Lumbosacral Defects. Ann Plast Surg 74(5): 589-593, 2013.
61 Thomsen JB, Bille C, Wamberg P, Jakobsen EH and Arffmann S: Propeller TAP flap: is it usable for breast reconstruction? J Plast Surg Hand Surg 47(5): 379-382, 2013.
62 Alharbi M, Perignon D, Assaf N, Qassemyar Q, Elsamad Y and Sinna R: Application of the inner arm perforator flap in the management of axillary hidradenitis suppurativa. Ann Chir Plast Esthet 59(1): 29-34, 2014.
63 Angrigiani C, Rancati A, Escudero E, Artero G, Gercovich G and Deza EG: Propeller thoracodorsal artery perforator flap for breast reconstruction. Gland Surg 3(3): 174-180, 2014.
64 Cologlu H, Ozkan B, Uysal AC, Cologlu O and Borman H: Bilateral propeller flap closure of large meningomyelocele defects. Ann Plast Surg 73(1): 68-73, 2014.
65 Corradino B, Di Lorenzo S, Hubova M and Cordova A: Propeller flap for treatment of a poststernotomy sternal fistula: a case report. J Plast Reconstr Aesthet Surg 67(11): e266-269, 2014.
66 Hashimoto I, Abe Y and Nakanishi H: The internal pudendal artery perforator flap: free-style pedicle perforator flaps for vulva, vagina, and buttock reconstruction. Plast Reconstr Surg 133(4): 924-933, 2014.
67 Karki D, Mehta N and Narayan RP: Post-burn axillary contracture: A therapeutic challenge! Indian J Plast Surg 47(3): 375-380, 2014.
68 Lepivert JC, Alet JM, Michot A, Pelissier P and Pinsolle V: Reconstruction of an abdominal wall defect with a superior epigastric perforator propeller flap: case report. Ann Chir Plast Esthet 59(5): 360-363, 2014.
69 Wettstein R, Weisser M, Schaefer DJ and Kalbermatten DF: Superior epigastric artery perforator flap for sternal osteomyelitis defect reconstruction. J Plast Reconstr Aesthet Surg 67(5): 634-639, 2014.
70 Yuste V, Delgado J, Silva M, Rodrigo J and Albinana F: The double gluteal myocutaneous propeller flap for the coverage of massive myelomingoceles. J Plast Reconstr Aesthet Surg 67(5): 737-738, 2014.

71 Zang M, Guo L and Liu Y: Propeller medial arm flap: a plan "B" for reconstruction of radiation ulcer of the chest wall. J Plast Reconstr Aesthet Surg 67(12): 1769-1770, 2014.
72 Ayestaray B and Proske YM: Perineal and posterior vaginal wall reconstruction with a superior gluteal artery dual perforatorpedicled propeller flap. Microsurgery 35(1): 64-67, 2015.
73 Brunetti B, Tenna S, Aveta A, Poccia I, Segreto F, Cerbone V and Persichetti P: Posterior trunk reconstruction with the dorsal intercostal artery perforator based flap: CLINICAL experience on 20 consecutive oncological cases. Microsurgery, 2015 [ahead of print].
74 Park SW, Oh TS, Eom JS, Sun YC, Suh HS and Hong JP: Freestyle Multiple Propeller Flap Reconstruction (Jigsaw Puzzle Approach) for Complicated Back Defects. J Reconstr Microsurg 31(4): 261-267, 2015.
75 Scaglioni MF, Giuseppe AD and Chang EI: Propeller flap reconstruction of abdominal defects: review of the literature and case report. Microsurgery 35(1): 72-78, 2015.
76 Zang M, Yu S, Xu L, Zhao Z, Zhu S, Ding Q and Liu Y: Intercostal artery perforator propeller flap for reconstruction of trunk defects following sarcoma resection. J Plast Reconstr Aesthet Surg 68(6): 822-829, 2015.
77 Jakubietz RG, Jakubietz MG, Gruenert JG and Kloss DF: The 180-degree perforator-based propeller flap for soft tissue coverage of the distal, lower extremity: a new method to achieve reliable coverage of the distal lower extremity with a local, fasciocutaneous perforator flap. Ann Plast Surg 59(6): 667-671, 2007.
78 Moscatiello F, Masia J, Carrera A, Clavero JA, Larranaga JR and Pons G: The 'propeller' distal anteromedial thigh perforator flap. Anatomic study and clinical applications. J Plast Reconstr Aesthet Surg 60(12): 1323-1330, 2007.
79 Pignatti M, Pasqualini M, Governa M, Bruti M and Rigotti G. Propeller flaps for leg reconstruction. J Plast Reconstr Aesthet Surg 61(7): 777-783, 2008.
80 Rad AN, Singh NK and Rosson GD. Peroneal artery perforatorbased propeller flap reconstruction of the lateral distal lower extremity after tumor extirpation: case report and literature review. Microsurgery 28(8): 663-670, 2008.
81 Rubino C, Figus A, Mazzocchi M, Dessy LA and Martano A. The propeller flap for chronic osteomyelitis of the lower extremities: a case report. J Plast Reconstr Aesthet Surg 62(10): e401-404, 2009.
82 Jiga LP, Barac S, Taranu G, Blidisel A, Dornean V, Nistor A, Stoichitoiu T, Geishauser M and Ionac M. The versatility of propeller flaps for lower limb reconstruction in patients with peripheral arterial obstructive disease: initial experience. Ann Plast Surg 64(2): 193-197, 2010.
83 Rezende MR, Rabelo NT, Wei TH, Mattar Junior R, de Paula EL and Zumiotti AV: Skin coverage of the middle-distal segment of the leg with a pedicled perforator flap. J Orthop Trauma 24(4): 236-243, 2010.
84 Schaverien MV, Hamilton SA, Fairburn N, Rao P and Quaba AA: Lower limb reconstruction using the islanded posterior tibial artery perforator flap. Plast Reconstr Surg 125(6): 17351743, 2010.
85 Bajantri B, Sabapathy SR and Burgess TM: The 'throw over flap': A modification of the propeller flap for reconstruction of non-adjacent soft tissue defects. Indian J Plast Surg 44(3): 525526, 2011.

86 Bous A, Ronsmans C, Nizet JL, Jacquemin D and Nardella D: The perforator pedicled propeller flap for distal tibial exposure: two case reports. Ann Chir Plast Esthet 56(6): 562-567, 2011.
87 Chang SM, Tao YL and Zhang YQ: The distally perforatorpedicled propeller flap. Plast Reconstr Surg 128(5): 575e-577e; author reply 577e, 2011.
88 Gobel F, Pelissier P and Casoli V: Perforator propeller flap for cutaneous coverage of the knee. Ann Chir Plast Esthet 56(4): 280-286, 2011.
89 Ignatiadis IA, Georgakopoulos GD, Tsiampa VA, Polyzois VD, Arapoglou DK and Papalois AE: Distal posterior tibial artery perforator flaps for the management of calcaneal and Achilles tendon injuries in diabetic and non-diabetic patients. Diabet Foot Ankle 2: 7483, 2011.
90 Lu TC, Lin CH, Lin CH, Lin YT, Chen RF and Wei FC: Versatility of the pedicled peroneal artery perforator flaps for soft-tissue coverage of the lower leg and foot defects. J Plast Reconstr Aesthet Surg 64(3): 386-393, 2011.
91 Tos P, Innocenti M, Artiaco S, Antonini A, Delcroix L, Geuna S and Battiston B: Perforator-based propeller flaps treating loss of substance in the lower limb. J Orthop Traumatol 12(2): 9399, 2011.
92 Georgescu AV, Matei IR and Capota IM: The use of propeller perforator flaps for diabetic limb salvage: a retrospective review of 25 cases. Diabet Foot Ankle 3, 2012. 10.3402/dfa.v3i0.18978
93 Hsu H, Chien SH, Wang CH, Cheng LF, Lin CM, Wu MS, Huang CC and Lee JT: Expanding the applications of the pedicled anterolateral thigh and vastus lateralis myocutaneous flaps. Ann Plast Surg 69(6): 643-649, 2012.
94 Karki D and Narayan RP: The versatility of perforator-based propeller flap for reconstruction of distal leg and ankle defects. Plast Surg Int 2012: 303247, 2012.
95 Ayestaray B: Salvage of a recurrent trochanteric pressure sore with coxofemoral osteoarthritis using a superficial inferior epigastric artery propeller flap. Eur J Plast Surg 36: 397-398, 2013.

96 Sharma M, Balasubramanian D, Thankappan K, Sampathirao CL, Mathew J, Chavre S and Iyer S: Propeller flaps in the closure of free fibula flap donor site skin defects. Ann Plast Surg 71(1): 76-79, 2013.
97 Wong CH, Goh T, Tan BK and Ong YS: The anterolateral thigh perforator flap for reconstruction of knee defects. Ann Plast Surg 70(3): 337-342, 2013.
98 Chang SM, Wang X, Huang YG, Zhu XZ, Tao YL and Zhang YQ: Distally based perforator propeller sural flap for foot and ankle reconstruction: a modified flap dissection technique. Ann Plast Surg 72(3): 340-345, 2014.
99 Cinpolat A, Bektas G, Ozkan O, Rizvanovic Z, Seyhan T, Coskunfirat OK and Ozkan O: Metatarsal artery perforatorbased propeller flap. Microsurgery 34(4): 287-291, 2014.
100 Dong KX, Xu YQ, Fan XY, Xu LJ, Su XX, Long H, Xu LQ and He XQ: Perforator pedicled propeller flaps for soft tissue coverage of lower leg and foot defects. Orthop Surg 6(1): 4246, 2014.
101 Hallock GG: The First Dorsal Metatarsal Artery Perforator Propeller Flap. Ann Plast Surg, 2014. [Epub ahead of print].
102 Horta R, Valenca-Filipe R, Nascimento R, Monteiro D, Silva A and Amarante JM: Perforator-based propeller flap with venous axial supercharging for reconstruction of a leg defect. Injury 45(12): 2118-2119, 2014.

103 Innocenti M, Cardin-Langlois E, Menichini G and Baldrighi C: Gastrocnaemius-propeller extended miocutanous flap: a new chimaeric flap for soft tissue reconstruction of the knee. J Plast Reconstr Aesthet Surg 67(2): 244-251, 2014.
104 Innocenti M, Menichini G, Baldrighi C, Delcroix L, Vignini L and Tos P: Are there risk factors for complications of perforatorbased propeller flaps for lower-extremity reconstruction? Clin Orthop Relat Res 472(7): 2276-2286, 2014.
105 K TR, J V and M S: Propeller Flaps and Its Outcomes - A Prospective Study of 15 Cases Over Two-years. J Clin Diagn Res 8(1): 87-89, 2014.
106 Patel KM, Sosin M and Ramineni PS: Freestyle propeller flaps from the lower abdomen: a valuable reconstructive option for proximal thigh defects. Microsurgery 34(3): 233-236, 2014.
107 Royer E, Rausky J, Binder JP, May P, Virzi D and Revol M: Intraoperative verification of a perforator flap vascularization by indocyanine green angiography. Ann Chir Plast Esthet 59(1): 70-75, 2014.
108 Schannen AP, Goshima K, Latt LD and Desilva GL: Simultaneous soft tissue coverage of both medial and lateral ankle wounds: Sural and rotational flap coverage after revision fixation in an infected diabetic ankle fracture. J Orthop 11(1): 19-22, 2014.
109 Tremp M, Largo RD, Borens O, Schaefer DJ and Kalbermatten DF: Bone propeller flap: a staged procedure. J Foot Ankle Surg 53(2): 226-231, 2014.
110 Vaienti L, Calori GM, Leone F, Brioschi M, Parodi PC and Marchesi A: Posterior tibial artery perforator flaps for coverage of Achilles region defects. Injury 45(Suppl 6): S133-137, 2014.
111 Valentin GA, Rodica MI and Manuel L: Plantar flaps based on perforators of the plantar metatarsal/common digital arteries. J Reconstr Microsurg 30(7): 469-474, 2014.
112 Acarturk TO, Tunc S and Acar F: Versatility of the PerforatorBased Adipose, Adipofascial, and Fasciocutaneous Flaps in Reconstruction of Distal Leg and Foot Defects. J Foot Ankle Surg, 2015.
113 Kang JS, Choi HJ and Tak MS: Reconstruction of Heel With Propeller Flap in Postfasciotomy and Popliteal Artery Revascularization State. Int J Low Extrem Wounds, 2015. [Epub ahead of print].
114 Zhong W, Lu S, Wang C, Wen G, Han P and Chai Y: Single perforator greater saphenous neuro-veno-fasciocutaneous propeller flaps for lower extremity reconstructions. ANZ J Surg, 2015. [Epub ahead of print].

115 Zheng HP, Zhuang YH, Lin J, Zhang YX, Levin LS, Grassetti L, Lazzeri D and Persichetti P: Revisit of the anatomy of the distal perforator of the descending genicular artery and clinical application of its perforator "propeller" flap in the reconstruction of soft tissue defects around the knee. Microsurgery 35(5): 370-379, 2014.
116 Teo TC: The propeller flap concept. Clin Plast Surg 37(4): 615626, vi, 2010.

117 Jakubietz RG, Jakubietz DF, Gruenert JG, Schmidt K, Meffert RH and Jakubietz MG: Reconstruction of soft tissue defects of the Achilles tendon with rotation flaps, pedicled propeller flaps and free perforator flaps. Microsurgery 30(8): 608-613, 2010.
118 Ayestaray B, Ogawa R, Ono S and Hyakusoku H: Propeller flaps: classification and clinical applications. Ann Chir Plast Esthet 56(2): 90-98, 2011.
119 Kim do Y, Kim HY, Han YS and Park JH: Chest wall reconstruction with a lateral thoracic artery perforator propeller flap for a radiation ulcer on the anterior chest. J Plast Reconstr Aesthet Surg 66(1): 134-136, 2013.
120 Okada M, Ikeda M, Uemura T, Takada J and Nakamura H: A propeller flap based on the thoracoacromial artery for reconstruction of a skin defect in the cervical region: a case report. J Plast Reconstr Aesthet Surg 66(5): 720-722, 2013.
121 Borsen-Koch M, Gunnarsson GL, Udesen A, Arffmann S, Jacobs J, Salzberg A and Thomsen JB: Direct delayed breast reconstruction with TAP flap, implant and acellular dermal matrix (TAPIA). J Plast Reconstr Aesthet Surg 68(6): 815-821, 2015.

122 D'Arpa S, Toia F, Pirrello R, Moschella F and Cordova A: Propeller flaps: a review of indications, technique, and results. Biomed Res Int 2014: 986829, 2014.
123 Lazzeri D, Huemer GM, Nicoli F, Larcher L, Dashti T, Grassetti L, Li Q, Zhang Y, Spinelli G and Agostini T: Indications, outcomes, and complications of pedicled propeller perforator flaps for upper body defects: a systematic review. Arch Plast Surg 40(1): 44-50, 2013.
124 Zhang C, Sun J, Zhu H, Xu L, Ji T, He Y, Yang W, Hu Y, Yang X and Zhang Z : Microsurgical free flap reconstructions of the head and neck region: Shanghai experience of 34 years and 4640 flaps. Int J Oral Maxillofac Surg 44(6): 675-684, 2015.
125 de Blacam C, Colakoglu S, Ogunleye AA, Nguyen JT, Ibrahim AM, Lin SJ, Kim PS and Lee BT: Risk factors associated with complications in lower-extremity reconstruction with the distally based sural flap: a systematic review and pooled analysis. J Plast Reconstr Aesthet Surg 67(5): 607-616, 2014.
126 Andrei R, Popescu SA and Zamfirescu D: Lower limb perforator propeller flaps - clinical applications. Chirurgia (Bucur) 109(3): 299-309, 2014.
127 Nelson JA, Fischer JP, Brazio PS, Kovach SJ, Rosson GD and Rad AN: A review of propeller flaps for distal lower extremity soft tissue reconstruction: Is flap loss too high? Microsurgery 33(7): 578-586, 2013.

Received March 12, 2016
Revised April 14, 2016
Accepted April 18, 2016

