
Abstract. An effective countermeasure against radiation
damage to normal tissues is urgently needed. The major goal of
the present study was to determine if minocycline could modify
the immunomodulatory effects of radiation on the brain.
C57BL/6 mice were treated with minocycline intraperitoneally
for 5 days beginning immediately before total-body exposure
to 0, 1, 2 and 3 Gray (Gy) 60Co γ-rays. Brains were collected
on days 4 and 32 post-irradiation for cytokine and gene
analyses. Minocycline treatment significantly increased the
levels of interleukin (IL)-10, IL-15 and vascular endothelial
growth factor (VEGF) in the brain on day 4 in one or more
irradiated groups compared to radiation-alone (p<0.05). IL-
10 is anti-inflammatory, IL-15 can prevent apoptosis and
VEGF is nuroprotective. On day 32, the drug decreased IL-1β
in the 2- Gy group (p<0.05 vs. 2-Gy alone); this cytokine is
implicated in immune-related central nervous system
pathologies. Microarray analysis of brains on day 32 showed
that while radiation increased expression of inflammatory
genes such as Il1f10, Il17, Tnfrsf11b, Tnfsf12, Il12b and Il1f8,
these were no longer up-regulated in the minocycline-treated
groups. Similarly, the pro-apoptotic gene Bik and nitric oxide
synthase producer (Nostrin) were no longer up-regulated in the
drug-treated groups. Pathway analysis based on gene data
suggested that catenin-β1 and tumor suppressor-related
transcription regulation were significantly activated by
radiation and/or minocycline (activation z-score >2.0).
Overall, the data warrant further testing of minocycline as a
potential neuroprotectant against radiation-induced damage. 

There continues to be great urgency to develop safe and
effective agents that protect against the damaging effects of

radiation on normal tissues in the context of radiological/
nuclear events. As astronauts may be exposed to doses as high
as 1-3 Gray (Gy) during a solar particle event (SPE) (1), the
development of effective radioprotectants is also important to
agencies such as the National Aeronautics and Space
Administration (NASA). Due to the highly radiosensitive
nature of the hematopoietic system and gastrointestinal tract,
most studies to date have focused on pharmacological agents
that mitigate the damage associated with acute radiation
syndrome (ARS) (2). Although various cytokines and growth
factors appear promising, minimal efficacy and side-effects
remain problematic (3). Currently, although there are several
agents that have Investigational New Drug (IND) status,
granulocyte colony-stimulating factor (G-CSF) is the only drug
approved by the Food and Drug Administration (FDA) of the
United States as an Emergency Use IND. In contrast, research
on agents with potential to protect the central nervous system
(CNS) against radiation damage has been minimal and needs to
be further explored.

Although the brain is considered to be relatively
radioresistant, irradiation of neural tissues is often associated
with localized inflammation (4, 5). The neuroinflammatory
milieu generated by resident and infiltrating populations in
response to radiation includes pro-inflammatory cytokines and
other factors indicative of increased and prolonged oxidative
stress. For example, the acute response to radiation in the brain
involves an increase in inflammatory cytokines and mediators
such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-
1β), intercellular adhesion molecule-1 (ICAM-1) and
cyclooxygenase-2 (COX-2), as well as activation of
transcription factors such as nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) and activator protein-1
(AP-1) (6-8). Prolonged oxidative stress, in turn, is responsible
for the long-term pathogenesis of radiation-induced brain injury
(9, 10). Indeed, irradiation of the brain has already been shown
to increase apoptosis in the neural stem cell pools of the
hippocampus, a structure critical to memory and other
behaviors (11, 12). Furthermore, radiation-induced decrement
in stem cell populations has been shown to impact behavior in
animal models (13, 14).
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Numerous antioxidants are in various stages of development
for protection against or mitigation of oxidative stress triggered
by radiation exposure (15). These include superoxide dismutase
(SOD) mimetics (16), resveratrol (17), melatonin (18) and
others. Currently, however, only amifostine is approved by the
FDA for use in a clinical setting. Although amifostine, a free
radical scavenger, can be useful as a radioprotectant of healthy
tissues, it has numerous side-effects, e.g. nausea/vomiting, acute
hypersensitivity reaction, pruritis, urticaria, seizures and
reduction in blood pressure (http://www.drugs.com/sfx/
amifostine-side-effects.html). In some cases, the side-effects are
serious and require discontinuation of the drug.

Minocycline is a semi-synthetic tetracycline derivative that
is commonly prescribed for a variety of bacterial infections.
However, the drug has a number of actions unrelated to its
anti-microbial properties that may be useful for therapy.
Although the mechanisms of action are still being worked
out, minocycline can efficiently cross the blood-brain barrier
(BBB) and exert neuroprotective effects in animal models of
cerebral ischemia, traumatic brain injury and several other
pathologies related to the CNS (19). The drug is being
evaluated as a possible adjunct treatment for early-stage
schizophrenia and other psychiatric disorders (20-22).
Minocycline reportedly also has anti-apoptotic, anti-
inflammatory and anti-tumorigenic effects that include
reduction of glioma cell invasiveness (23). Perhaps most
important to the present study is that minocycline has free
radical scavenging properties (24) and potential to protect
neurons against radiation-induced apoptotic death (25). In
addition, minocycline can be administered orally and has a
relatively long half-life, characteristics that are favorable in
case of a nuclear disaster or during deep space travel where
medical support is likely to be minimal.

The data presented here are part of a larger study that
involved whole-body irradiation of mice, with the intent to
assess the effects of minocycline on the hematopoietic
system in the context of ARS followed by recovery (26, 27).
However, brains were also harvested to evaluate the potential
of minocycline as an anti-inflammatory radioprotectant of
the CNS in an animal model under conditions that simulate
exposures that may occur during a radiological/nuclear event
on Earth, as well as irradiation during missions in space.
Cytokine levels and genes related to cytokines and
neurotoxicity were evaluated in brain tissue, both with and
without minocycline treatment. The unique data generated in
this study support further investigation of this drug under
conditions simulating a radiation catastrophe.

Materials and Methods

Animals and study design. Female C57BL/6 mice (n=80; 8-9 weeks
of age; Charles River Breeding Laboratories, Inc. Hollister, CA,
USA) were acclimatized for 5-7 days in large plastic cages

(n=10/cage) under standard vivarium conditions. Animals were
assigned to 8 groups (10 mice/group): a) deionized water (dH2O) +
0 Gy; b) dH2O + 1 Gy; c) dH2O +2 Gy; d) dH2O + 3 Gy; e)
minocycline + 0 Gy; f) minocycline + 1 Gy; g) minocycline + 2 Gy;
and h) minocycline +3 Gy. Animals were rapidly euthanized on days
4 and 32 post-irradiation using 100% CO2 in compliance with the
recommendations of the National Institutes of Health and the Panel
of Euthanasia of the American Veterinary Medical Association.
Brains were collected following euthanasia, cut into right and left
hemispheres, and immediately snap-frozen in liquid nitrogen. All
procedures were approved by the Institutional Animal Care and Use
Committee of Loma Linda University.

Drug treatment and irradiation of mice. Minocycline hydrochloride
was purchased from Triax Pharmaceuticals, LLC, Cranford, NJ, USA.
Animals in the respective treatment groups were injected
intraperitonealy (i.p.) with the drug (45 mg/kg in 0.1 ml) or dH2O
immediately before irradiation. A Co-60 source (Eldorado machine,
Atomic Energy of Canada Ltd, Commercial Products Division,
Ottawa, Canada) was used to administer 1, 2 or 3 Gy whole-body
radiation at 1.58 Gy/min to mice placed individually into rectangular
plastic aerated boxes (30×30×60 mm3). A second injection of
minocycline (45 mg/kg) or dH2O was administered to the appropriate
groups immediately after irradiation. Three consecutive injections of
minocycline (22.5 mg/kg) or dH2O were then administered on the
following three days post-irradiation. Sham-irradiated groups were
given similar treatment, but without the radiation.

Analysis of cytokines. For cytokine analysis, left hemispheres
obtained from mice on days 4 and 32 were thawed. Homogenates
were prepared using phosphate buffered saline (PBS without
calcium and magnesium) containing a cocktail of protease inhibitor
tablets from Hoffman-La Roche, Inc. (Pleasanton, CA, USA) and
0.05% Tween-20. One ml of buffer solution was used for every 
0.2 g tissue for homogenization, followed by centrifugation. The
supernatants were stored at –80˚C until analysis. Supernatants from
brain homogenates were thawed and analyzed for 22 different
cytokines and chemokines using the Mouse Cytokine/Chemokine
Milliplex MAP Kit (Millipore, MA, USA) and Luminex100 (Linco
Research, Inc., St. Charles, MO, USA) as per the manufacturer’s
instructions. The cytokines/chemokines evaluated were as follows:
IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12(p70), IL-
13, IL-15, IL-17, G-CSF, granulocyte-macrophage colony-
stimulating factor (GM-CSF), interferon-γ (IFN−γ), IFN-γ-induced
protein 10 (IP-10), keratinocyte chemoattractant (KC), monocyte
chemotactic protein-1 (MCP-1), macrophage inflammatory protein-
1α (MIP-1α), regulated and normal T-cell expressed and secreted
(RANTES) and TNF-α. Vascular endothelial growth factor (VEGF)
and matrix metallopeptidase-9 (MMP-9) were analyzed via enzyme-
linked immunosorbent assay (ELISA) kits (R&D Systems,
Minneapolis, MN, USA) as per the vendor’s protocol.

Microarray analysis of cytokine and neurotoxicity gene expression.
Expression of cytokine- and neurotoxicity-related genes in brain
samples collected on day 32 post-irradiation was determined using
quantitative real-time polymerase chain reaction (qRT-PCR). The
PAMM-21 Mouse Cytokine and PAMM-96 Mouse Neurotoxicity
gene arrays were purchased from SABiosciences/Qiagen, Frederick,
MD, USA; each array evaluated 84 genes. Standard procedures were
used throughout and have been previously described in detail (28).
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Biological pathway analysis. Although we only characterized a
small subset of functionally-related genes, we performed the
Upstream Regulator Analysis using Ingenuity Pathway Analysis
(IPA) software (Ingenuity Systems, Inc., Redwood City, CA, USA;
www.ingenuity.com). We combined data collected via the two qRT-
PCR arrays described above for this analysis. IPA upstream analysis
is based solely on changes in expression of genes known to be
downstream from the transcription regulator based on the literature.
Our goal here was to provide information regarding signaling
pathways in the brain that may be involved under the conditions of
our study.

Statistical analysis. Difference in gene expression was determined
using the Student’s t-test at the SABiosciences/Qiagen Technical Core.
Other data were analyzed by two-way analysis of variance (ANOVA).
Tukey’s test was performed for pair-wise multiple comparisons when
indicated. Means and standard errors of means (SEM) are presented. A
p-value of <0.05 indicated significance. SigmaStat™ software, version
2.03 (SPSS Inc., Chicago, IL, USA) was used. For the pathway
analysis in IPA, we used the recommended activation z-score >2.0 to
indicate significantly activated transcription regulators.

Results 
Cytokine levels in brain tissue. Minocycline treatment,
radiation or both had a significant impact on 5 of the 12
cytokines that were detectable on day 4 (Figure 1). Although
radiation generally decreased IL-9 (p<0.05), only the 2- and
3-Gy, non-drug treated groups were significantly different
from 0 Gy controls in post-hoc Tukey analysis (p<0.05).
There was also a main effect of radiation on IP-10 (p<0.05).
This was likely due to slight decreases noted at 1 Gy and
increases at 3 Gy, although these differences did not reach
significance in post-hoc analysis. Similarly, although
minocycline generally decreased IP-10 compared to their
non-treated counterparts, resulting in the main effect of drug
(p<0.05), there were no drug-associated differences in post-
hoc analysis. In contrast, there were drug-associated
increases in IL-10, IL-15 and VEGF (p<0.05 for a main
effect of minocycline). Although the radiation-induced
decreases in IL-10 and VEGF were relatively slight,
reduction in IL-10 was significant in two of the irradiated
groups (p<0.05 vs. 0 Gy without drug). However, all three
irradiated groups that received minocycline had high IL-10
compared to their counterparts that did not receive drug
(p<0.05). For VEGF, the drug-induced enhancement was
noted for the 1-Gy and 2-Gy groups. This divergent response
resulted in a significant drug x radiation interaction for both
IL-10 and VEGF (p<0.05). In contrast, minocycline-induced
increases in IL-15 did result in a main effect of drug
(p<0.05), but reached significance only in the 1-Gy-treated
mice (p<0.05 vs. 1 Gy without drug) and the interaction was
not enough to reach significance. The drug and/or radiation
had no effect on the following cytokines that were detectable
at day 4 of assessment: IFN-γ (20.0±0.5 to 21.5±0.7 pg/ml),
KC (23.1±0.7 to 31.2±7.3 pg/ml), IL-1α (49.4±1.4 to

53.3±3.2 pg/ml), IL-4 (3.4±0.03 to 3.5±0.03 pg/ml), IL-7
(12.7±1.9 to 17.8±1.9 pg/ml), IL-13 (11.5±2.5 to 17.2±3.7
pg/ml) and MMP-9 (0.16±0.02 to 0.3±0.06 pg/ml).
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Figure 1. Cytokines in brain at 4 days after irradiation. Each bar
represents the mean±SEM for n=4-5 mice/group. Two-way ANOVA
(p<0.05): §, Main effect of radiation; †, main effect of drug; ‡, drug x
radiation interaction. Tukey test: Lines above bars indicate the groups
that differ significantly, p<0.05.



On day 32 after irradiation, 10 cytokines were detectable.
However, significance was obtained for only two of these, i.e.
IL-1β and IP-10 (Figure 2). The main drug effect on IL-1β
(p<0.05) was most likely due to the relatively low levels at 0
and 2 Gy compared to non-drug-treated counterparts. This drug
effect reached significance in post-hoc analysis at 2 Gy
(p<0.05). There were no main effects or interactions involving
radiation for IL-1β. Although, radiation generally increased IP-
10 (p<0.05 for a main effect of radiation), minocycline had no
effect and there were no significant differences between any
groups in post-hoc analysis. The range for each of the detectable
cytokines that were not affected by either drug or radiation were
as follows: G-CSF (8.4±0.2 to 9.2±0.3 pg/ml), IL-6 (6.6±0.4 to
8.6±0.3 pg/ml), IL-9 (34.1±10.9 to 57.1±7.7 pg/ml), IL-15
(13.6±3.9 to 23.5±2.3 pg/ml), KC (17.4±4.5 to 24.0±0.1 pg/ml),
MIP-1α (21.6±5.7 to 34.2±2.3 pg/ml), MMP-9 (0.1±0.01 to
0.2±0.02 pg/ml) and VEGF (77.8±4.2 to 104.6±15.8 pg/ml).

Cytokine and neurotoxicity gene expression in the brain.
These analyses were performed on the 0-Gy and 3-Gy
groups (with and without drug) only on day 32 post-
irradiation. To be considered significant, the changes in gene
expression had to meet the criteria of p<0.05 and fold-
change ≥1.5 vs. 0 Gy (no drug).

Figure 3 shows results from the cytokine gene array.
Exposure to 3-Gy radiation alone increased the expression of
23 genes: Csf2, Ctf1, Il15, Inha, Il11, Il17c, Il20, Tnfrsf11b,
Tnfsf12, Gdf1, Ifnb1, Gdf15, Il12b, Il1f6, Il1f8, Il24, Il1f10,
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Figure 2. Cytokines in brain at 32 days after irradiation. Each bar
represents the mean±SEM for n=4-5 mice/group. Two-way ANOVA
(p<0.05): §, Main effect of radiation; †, main effect of drug. Tukey test:
Lines above bars indicate the groups that differ significantly, p<0.05.

Table I. Cytokine-related genes in brain tissue that were significantly
modulated on day 32 after irradiation compared to dH2O + 0 Gy.

Gene Gene description

Bmp5 Bone morphogenetic protein 5
Bmp6 Bone morphogenetic protein 6
Bmp7 Bone morphogenetic protein 7
Bmp10 Bone morphogenetic protein 10
Cd70 CD70 antigen
Csf2 Colony stimulating factor 2 (granulocyte-macrophage)
Ctf1 Cardiotrophin 1
Gdf1 Growth differentiation factor 1
Gdf2 Growth differentiation factor 2
Gdf5 Growth differentiation factor 5
Gdf10 Growth differentiation factor 10
Gdf15 Growth differentiation factor 15
Ifnb1 Interferon beta 1, fibroblast
Il1f6 Interleukin 1 family, member 6
Il1f8 Interleukin 1 family, member 8
Il1f9 Interleukin 1 family, member 9
Il1f10 Interleukin 1 family, member 10
Il1rn Interleukin 1 receptor antagonist
Il3 Interleukin 3
Il11 Interleukin 11
Il12b Interleukin 12B
Il15 Interleukin 15
Il17c Interleukin 17C
Il20 Interleukin 20
Il24 Interleukin 24
Inha Inhibin alpha
Tnfrsf11b Tumor necrosis factor receptor superfamily, 

member 11b (osteoprotegerin)
Tnfsf10 Tumor necrosis factor (ligand) superfamily, member 10
Tnfsf11 Tumor necrosis factor (ligand) superfamily, member 11
Tnfsf12 Tumor necrosis factor (ligand) superfamily, member 12

These genes had fold-change ≥1.5 and p<0.05 compared to the control
group that received no minocycline treatment and no radiation.

Table II. Neurotoxicity-associated genes in brain tissue that were
significantly modulated on day 32 after irradiation compared to dH2O
+ 0 Gy.

Gene Gene description

Atf4 Activating transcription factor-4
Bik Bcl2-interacting killer
Birc2 Baculoviral IAP repeat-containing 2
Cidea Cell death-inducing DNA fragmentation factor, 

alpha subunit-like effector A
Ereg Epiregulin
Fas Fas (TNF receptor superfamily member 6)
Hspa5 Heat shock protein 5
Nostrin Nitric oxide synthase trafficker
Pappa Pregnancy-associated plasma protein A
Tacr1 Tachykinin receptor-1
Txnip Thioredoxin interacting protein
Tyrp1 Tyrosinase-related protein 1

These genes had fold-change ≥1.5 and p<0.05 compared to the control
group that received no minocycline treatment and no radiation.



Gdf10, Gdf2, Cd70, Bmp5, Bmp6 and Bmp10. In the 3-Gy
group that also received minocycline, the expression of 13 of
these genes was equivalent to controls. In addition, the
combined treatment resulted in down-regulation of Gdf5 and
up-regulation of Il1rn, Il3, Il1f9, Bmp7, Tnfsf10 and Tnfsf11,
genes that were not modulated by either radiation or drug
alone. The effect of drug alone was very minimal, i.e. Cd70
and Bmp5 had increased expression versus 0 Gy (no drug).
Table I presents a brief description of the 30/84 cytokine-
related genes with significantly modified expression
compared to 0 Gy (no drug).

Figure 4 presents results from the neurotoxicity array.
Exposure to 3 Gy radiation alone increased the expression of
10 genes: Ereg, Hspa5, Nostrin, Birc2, Txpnip, Atf4, Fas, Bik,
Cidea and Pappa. The increase in five of these genes was no
longer present in the irradiated group that was treated with
minocycline. As with the cytokine array, drug alone had very
little effect; only Tryp1 was up-regulated versus 0 Gy (no
drug). Overall, the expression of 12/84 neurotoxicity genes
was significantly modified compared to 0 Gy (no drug). A
brief description of these genes is presented in Table II.

Biological pathways. Due to the nature of the assessed
genes, the limited number of significant changes, and the
fact that “functionally-related” genes (as defined by
SABiosciences) are not necessarily all part of the same
biological pathway, we focused the analysis on upstream
transcription regulators. Based on this analysis, two
transcription regulators were significantly activated by one
or both treatments: CTNNB1 and TP53 (Figure 5).
Although we did not characterize the expression of the
CTNNB1 gene itself, based on the IPA analysis of
downstream activity, CTNNB1-dependent regulation was
predicted to be significantly activated (activation z-
score=2.2) in the dH2O + 3-Gy group compared to the
dH2O + 0-Gy controls. This regulation was no longer
significant when the mice were also treated with
minocycline (Figure 5). In contrast, TP53-dependent
transcription regulation was significantly activated only in
the Minocycline+3-Gy group compared to dH2O+0-Gy
controls (activation z-score=2.1). Neither of these
transcription regulators were predicted to be activated in the
Minocycline + 0-Gy group. 
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Figure 3. Fold-change in cytokine-related genes on day 32 post-irradiation. Data were obtained using an 84-gene microarray and quantitative real-
time polymerase chain reaction. Black bars: p<0.05.



Discussion

A number of differences were noted in brain cytokine
levels, especially at the early time point of assessment. On
day 4, minocycline increased IL-10 significantly in all
irradiated groups compared to their irradiated counterparts
that did not receive the drug (Figure 1). In studies of
traumatic spinal cord injury and neurogenic hypertension,
an increase in IL-10 upon treatment with minocycline has
also been reported (29, 30). This cytokine is produced by
leukocytes involved in both adaptive and innate immunity,
e.g. CD4+ T-cells, neutrophils, macrophages and others (31,
32). It has potent anti-inflammatory effects and is currently
being evaluated in clinical trials for pathologies that include
inflammation (33). IL-10 also possesses neuroprotective
properties that have been attributed to its ability to suppress
pro-apoptotic proteins (34, 35). This is an important
characteristic, since apoptosis is among the most significant
responses of the brain to damage caused by ionizing
radiation (11).

Minocycline increased VEGF in the 1- and 2-Gy irradiated
groups on day 4 (Figure 1), but not on day 32. Similar to IL-

10, an increase did not occur in the 0-Gy group. This
cytokine is produced under hypoxic conditions in many body
compartments by cells that include astrocytes, macrophages
and fibroblasts (36-38). However, although an increase in
VEGF in response to minocycline has been previously
reported (39, 40), to our knowledge this is the first study to
show that this occurs in brains of irradiated animals. VEGF
can be neuroprotective under a variety of conditions that
include radiation damage. For example, it has been
demonstrated that deficiency in hippocampal neurogenesis
after low radiation doses can be reversed when VEGF is
increased (41). Although we did not determine the cell
type(s) producing VEGF, astrocytes are a likely source.
Others have noted that minocycline increases astrocyte
viability in a mouse model of ischemic stroke (42). In our
study, the drug may simply have arrested the astrocytes in a
relatively radioresistant phase of the cell cycle. It is
important to note, however, that astrocytes have numerous
activities in the CNS, some of which do result in neuron
protection, whereas others can be destructive (43).

Minocycline increased the levels of IL-15 in brains of
mice exposed to 1 Gy (day 4; Figure 1), but did not modify
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Figure 4. Fold-change in neurotoxicity-related genes on day 32 post-irradiation. Data were obtained using an 84-gene microarray and quantitative
real-time polymerase chain reaction. Black bars: p<0.05.



the levels of the cytokine in the other irradiated groups. This
suggests that the drug had an impact on the production of IL-
15 only when the radiation dose was relatively low. This
cytokine is produced by many cell types, including
macrophages, and can cross the BBB (44, 45). Although IL-
15 has usually been reported to be pro-inflammatory, some
studies have suggested an anti-inflammatory role for this
molecule (46). An additional potentially beneficial effect of
IL-15 is facilitation of neurogenesis (47).

IP-10, also known as C-X-C motif chemokine 10
(CXCL10), was the only cytokine on which radiation had a
main effect at both time points of analysis (Figures 1 and 2).
Furthermore, the level of IP-10 was consistently lower on
day 4 in the drug-treated groups, regardless of radiation. This
could be a positive finding, since the chemokine is
implicated in pathologies that include injury and
inflammation (48). IP-10 is constitutively expressed in
lymphoid organs, but its production can be induced in a wide
variety of cells, including T-lymphocytes and endothelial
cells (49, 50). The drug-related decrease, however, was no

longer evident on day 32. Beneficial health effect, if any,
related to the early drug-induced decrease in IP-10 remains
to be determined.

Minocycline reduced the level of IL-1β in the brain on day
32 (Figure 2). Although this decrease was especially
pronounced in the 2-Gy irradiated group, relatively low
values were noted in the 0-Gy group as well. The somewhat
sporadic nature of IL-1β level in the groups that received
minocycline plus varying doses of radiation may be related
to lack of a strict dose response, i.e. discontinuous dose-
dependency, as has been previously reported for cells that
secrete this cytokine (51). Another possibility may be related
to the fact that cytokine secretion has a cyclic pattern after
radiation exposure (52). Thus, it seems possible that different
radiation doses together with minocycline may have resulted
in dose-dependent shifts in the cycling cascade that involves
this cytokine. IL-1β is well-known to be produced in large
amounts by cells of the monocyte-macrophage lineage that
include microglia. Minocycline-induced reduction of IL-1β
in the brain has been observed by other researchers in
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Figure 5. Transcription regulators at day 32 post-irradiation. Upstream Regulator Analysis using IPA indicated that the activity of two transcription
regulators was significantly impacted by the treatments. CTNNB1: Activation z-score=2.2 in the dH2O + 3 Gy group vs. dH2O + 0 Gy group. TP53:
activation z-score=2.1 in the Minocycline + 3Gy group vs. dH2O + 0 Gy group.



models of Alzheimer’s disease and excitotoxicity (53, 54).
Since this cytokine has been implicated in numerous
neurodegenerative diseases and is reported to be neurotoxic
(55-57), its reduction may be beneficial. Furthermore, studies
have shown that IL-1β (as well as IL-1α) produced by
microglia contributes to neurodegeneration (58) and neuron
loss has been associated with a simultaneous increase in
activated microglia (59). Thus, our findings are consistent
with reports that minocycline suppresses microglial
production of certain cytokines such as IL-1β (60).

It is worthy to note that we have previously found, under
the same conditions as the ones used here, that minocycline
enhanced the numbers and/or percentages of certain
leukocyte populations in the blood and spleen, when
combined with radiation (26, 27). The enhancement was
especially pronounced for splenic granulocytes on day 4
post-irradiation. We also found that drug treatment resulted
in high levels of G-CSF and GM-CSF that are well-known
to facilitate granulocyte recovery after radiation exposure.
However, since the high levels were found in spleen
supernatants after activation of T-lymphocytes with
immobilized antibody against CD3, direct comparison with
brain cytokines in the present study is not possible.

Neutrophils, the most abundant granulocyte type in blood,
are rapidly recruited to injured sites to begin repair of the
damage. When activated, these cells release a range of
cytokines, e.g., IL-6, IL-8, IL-12, TGF-β and TNF-α (61,
62). Neutrophils can induce T-cell migration and influence
the activities of endothelial cells that comprise the BBB,
microglia and astrocytes, all of which can also produce
cytokines. In addition, some cytokines can be transported
directly across the BBB (63). Given the complexity of
actions and interactions among cytokine-secreting cells, it is
not possible, at this time, to identify any one specific cell
type as the source responsible for the minocycline-induced
changes in the present study.

Microarray analyses of brains from mice on day 32 showed
that the expression of 42 out of a total of 168 evaluated genes
was significantly different from the 0 Gy (no drug) control
group (all panels in Figures 3 and 4). Thirty-three of these
genes were modified by 3 Gy radiation alone, i.e., 23 cytokine-
related genes (Figures 3 top panel) plus 10 neurotoxicity-
related genes (Fig. 4 top panel). This is not entirely surprising,
since other investigators have reported radiation-induced
aberrations in the brain a long time after whole-body exposure
(64, 65). With the combined treatment (minocycline + 3 Gy),
the expression of many genes altered by radiation alone, was
no longer different from normal and some genes that were not
modified by radiation alone were affected (Figures 3 and 4
middle panels). Because so many genes were affected, further
discussion must be limited to only a few. 

Expression of Gdf10 was up-regulated (2.7-fold) by
radiation-alone, but was equivalent to normal when

minocycline treatment was included (Figure 3 top two
panels). Since some Gdf are reported to be neuroprotective
(66), a reason why Gdf10 expression was not increased in
the presence of the drug could be due to less damage and
hence also less need to promote recovery. In support of this
possibility is that radiation did enhance the expression of
several cytokines that contribute to brain inflammation, but
not when minocycline treatment was added. In addition,
Il12b (up-regulated by radiation alone, but not in either of
the minocycline groups; Figure 3 all panels) encodes a
segment of the pro-inflammatory IL-12 cytokine. Il17c,
another gene that encodes a potent cytokine important in
brain inflammation, was no longer up-regulated when drug
treatment was included.

Expression of Tnfrsf11b, a member of the TNF
superfamily, was enhanced when radiation was used alone,
but not when combined with minocycline (Figure 3 top two
panels). Many diseases with an inflammatory component are
associated with over-production of factors in this superfamily
(67). Minocycline-induced reduction of TNF-α in the brain
has been previously reported (68), thus further supporting the
possibility that the drug may reduce the risk for
neurocognitive deficits. However, the drug had no effect on
the radiation-induced increase in Tnfsf12 and both Tnfsf10
and Tnfsf11 were significantly up-regulated only in the
combined-treatment group (Figure 3 middle panel). 

Radiation and minocycline increased the expression of
Bmp5 by >2.5-fold, regardless of whether they were
administered alone or in combination (Figure 3 all panels). It
has been suggested that the protein derived from Bmp5 may
ameliorate Parkinson’s disease, a condition that includes
brain inflammation (69). Overall, the most affected gene was
Bmp6; a >8-fold increase in expression occurred in the 3-Gy
irradiated groups (with and without minocycline; Figure 3
top two panels). Thus far, this and the other Bmp genes have
been studied primarily in the context of bone regeneration.
Much more research is needed to clarify the roles that these
genes play under conditions of radiation-induced oxidative
stress in the brain.

It is interesting to note that many of the cytokine genes
that were up-regulated in the irradiated mice are typically
released by antigen-presenting cells, including dendritic cells
(Il12b, Il15, Il20 and Ifnb1) and macrophages (Il1f10, Il36a
and Il36b). Because we did not isolate any specific cell type
from the brain tissue for the gene expression analysis, we
cannot be certain if the cytokines were up-regulated in
resident or infiltrating cell populations that present antigens
(70). Migration of these cell types from peripheral sites into
the brain has been linked to neurodegeneration and a variety
of CNS diseases (71, 72). The fact that the expression of
many of these genes was no longer enhanced in mice treated
with minocycline further suggests that the drug, indeed, has
a significant radioprotective role.
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Data from the neurotoxicity array (day 32) showed that
radiation alone up-regulated expression of five genes whose
expression was equivalent to normal when combined with
minocycline (Figure 4 top two panels). These genes included
Bcl-2 interacting killer (Bik), nitric oxide synthase trafficker
(Nostrin) and heat shock 70 kDa protein 5 (Hspa5). Bik
encodes a pro-apoptotic protein while the protein derived
from Nostrin induces the synthesis of nitric oxide. Reduction
in the expression of Nostrin is consistent with reports
showing that minocycline inhibits nitric oxide (73, 74).

After characterization of the 168 functionally-related genes,
we were able to identify two transcription regulators that were
likely to have been activated in one or more of our treatment
conditions (Figure 5). Although we did not directly measure
expression of the CTNNB1 gene that encodes catenin-β1,
upstream regulator analysis indicated that its activity was
increased in mouse brains sometime after exposure to 3 Gy
(activation z score=2.2). This increased activity is indicated by
the up-regulation of BMP4, BMP7, IFNB1, TNFRSF11B, FAS
and CCND1 expression. The increase in CTNNB1-regulated
activity was no longer present when mice were also treated
with minocycline, primarily due to decreases in IFNB1 and
TNFRSF11B activity. CTNNB1 is an important part of the
cadherin adhesion complex that plays a major role in the
canonical Wnt signaling pathway (75). Radiation-induced
activation of the Wnt/catenin-β signaling cascade has been
previously reported in the hippocampus of mice by Wei et al.
(76). The study also demonstrated that a low radiation dose
(0.3 Gy) reduced apoptotic death of neuronal stem cells. 

Furthermore, TP53-dependent activity was significantly
enhanced in brains from mice that received both radiation
and minocycline (activation z score=2.1), based on increases
in GDF15, DAPK1, TNFSF10, SOD2, FAS and CCND1
expression (Figure 5). TP53, a well-known tumor suppressor
(77), plays a key role in determining whether DNA repair or
apoptotic cell death takes place. Since it also functions in
DNA repair and recombination independently of its
transcriptional properties (78), it seems possible that
enhancement of its activity by minocycline in the irradiated
mice may be beneficial. This possibility is supported by the
drug-induced return to baseline in BCL-2 interacting killer
(BIK) that is pro-apoptotic. However, it must be noted that
TP53-dependent regulation could up-regulate DAPK1 (death-
associated protein kinase) that facilitates inflammasome
formation (79) and TNFSF10 (tumor necrosis factor-related
apoptosis-inducing ligand, also known as TRAIL) that may
promote vascular calcification (80).

Overall, our data increase knowledge on the potential of
minocycline as a radioprotectant in a radiation setting that
involves the CNS. A major promising finding is that the drug
increased the production of cytokines that are anti-
inflammatory, neuroprotective and/or neurogenic in an intact
mammalian model. Although in some cases, e.g., IL-10 and

VEGF, the drug-associated increases were relatively small, a
beneficial effect seems possible in the context of the
microenvironment within which they were produced.
Cytokines are highly potent proteins that are capable of
mediating biological effects at concentrations ranging from
pM to nM (52). In addition, the drug “normalized”
expression of genes that were up-regulated by radiation-
alone and may preserve viability of cells such as astrocytes.
IPA upstream analysis indicated that two transcription
regulators were likely to have been activated under one or
more of our treatment conditions, but confirmation requires
additional work, e.g. western blot and immunoprecipitation
assays. It would also be interesting to evaluate other tissues
to determine if the observed changes are specific to the brain.
Finally, it should be emphasized that firm conclusions cannot
yet be made. Further studies with minocycline are needed to
confirm its full potential as a radioprotective agent of the
CNS and whether it can reduce radiation-induced cognitive
decline. Understanding the mechanisms by which the drug
modifies radiation response is also essential in order to
optimize its utilization in a clinical setting.
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