
Abstract. Recent immune data on vitamin D3 deficiency
help to more clearly understand chronic fatiguing illnesses,
such as autoimmune disorders, cancer and chronic fatigue
syndrome (CFS). The vitamin D3 pathway is activated by
stress and requires sufficient stores of precursor 25-
hydroxyvitamin D3 for proper cell and immune functions. In
vitamin D3 deficiency, secretion of the antimicrobial peptide
cathelicidin is reduced, leading to impaired auto/xenophagy.
As a result, phagocytosis, cytotoxicity, antigen processing
and antigen presentation become dysregulated. In addition,
vitamin D3 deficiency affects T- and B-lymphocyte activation,
as well as quantity, maturation and function of regulatory
natural killer T-cells and their counterparts in the gut, i.e. T-
cell receptor-αβ, cluster of differentiation-8αα-positive
intraepithelial lymphocytes. Consequently, innate and
adaptive immunity become de-regulated, with microbial
effects contributing further to this. Persistent infections,
chronic inflammation and fatigue follow. Vitamin D3
substitution in such conditions may help to prevent or to
ameliorate such chronic conditions, even in patients with
cancer. 

Vitamin D3 and calcium deficiency are found in various
diseases, including immune disorders (1-6) and in conditions
with chronic fatigue (7-15). Some positive vitamin D
treatment reports (11, 12, 15, 16), indicate a possible
connection between vitamin D3 deficiency and chronic
fatigue, exhaustion and depression. This article reviews
immune reactivity as related to vitamin D3 levels, and energy
de-regulation in vitamin D3 deficiency. 

Sufficient Supply of Vitamin D3 is Important for
Proper Human Cell Functions and Stress Response

Following light activation in the skin and further enzymatic
processing, the active metabolite 1,25-dihydroxyvitamin D3
[1,25(OH)2D3] of vitamin D3-precursor, also called calcitriol,
is synthetized from the immediate pro-hormone 25-
hydroxycholecalciferol (25OHD3) by the enzyme cytochrome
p450-hydroxylase27B1 (CYP27B1). The reaction is mediated
in the kidneys by parathormone and is calcium-dependent
(17). This endocrine pathway serves in the tight regulation of
serum calcium levels (5, 6, 17). However, most cells also
convert 25OHD3 to active 1,25(OH)2D3, which serves as a
para-, or autocrine transcription factor binding to many gene
loci (17-22). In addition, 1,25(OH)2D3, in an epigenetic way,
directly influences cell signals and cell functions (21, 23-25).
1,25(OH)2D3 is an important cell regulator and influences cell
development, differentiation, proliferation and cell-cycle
control (20, 21). Various kinds of cell stress cause activation of
the vitamin D pathway, and generation of 1,25(OH)2D3
requires sufficient supply of the precursor 25OHD3 in order
to establish an effective protective response (17, 22). 

In particular, immune functions are highly dependent on
1,25(OH)2D3. Adequate functioning of immune cells
depends on the vitamin D3 pathway as initiated by the
expression of vitamin D receptor (VDR) and vitamin D-
activating enzyme CYP27B1 (1, 5, 17, 26-29). In addition,
1,25(OH)2D3 mediates the induction of voltage-gated
chloride and calcium ion channels, regulating the secretion
of cellular products, e.g. transmitters and immune granules
(23). The complex interplay of vitamin D3-induced effects
leading to immune effectiveness and to balanced immune
reactions are summarized in Figures 1-3.

Physical and Functional Epithelial 
Barriers are Enhanced by 1,25(OH)2D3

At the first stage of defense at dermal and mucosal barriers,
1,25(OH)2D3 regulates gene expression of major proteins

133

Correspondence to: Anna Dorothea Höck, MD, Mariawaldstraße 7,
50935 Cologne, Germany. E-mail: ad.hoeck@t-online.de

Key Words: Vitamin D3 deficiency, cathelicidin, auto/xenophagy,
immune imbalance, chronic diseases, review.

in vivo 28: 133-146 (2014)

Review

Vitamin D3 Deficiency Results in Dysfunctions of Immunity with
Severe Fatigue and Depression in a Variety of Diseases 

ANNA DOROTHEA HÖCK

Office of Internal Medicine, Cologne, Germany

0258-851X/2014 $2.00+.40



responsible for sealing epithelial tight junctions, i.e. claudins,
thus stabilizing skin and mucosal barriers (28, 30-32).
1,25(OH)2D3 enhances keratin differentiation (33-34),
modulates mitogen-activated protein kinase-signaling in
keratinocytes by exerting anti-inflammatory and protective
effects (35), and down-regulates matrix metalloproteinase-9
(36). Also 1,25(OH)2D3 protects against radiation effects
(37), and against programmed cell death in stressed
keratinocytes (38). 1,25(OH)2D3 reduces the responsiveness
of interleukin-2(IL-2)-activated T-lymphocytes, thus
diminishing stress-induced local inflammatory reactions (39). 

Influence of 1,25(OH)2D3 on 
Αntimicrobial Peptides (AMiPs) 

AMiPs are produced after a microbial challenge by epithelial
cells, by natural killer cells (NK), γδ-T-lymphocytes, and
also by B-lymphocytes (28, 29, 40, 41) serving as important
biochemical barriers. AMiPs de-stabilize bacterial
membranes by cationic and electrostatic effects (28, 29, 40).
In addition, they are multifunctional and bind to certain cell
signaling receptors and to DNA (42-45). They interact with
immune, endothelial and epithelial cells (42, 46, 47),
enhancing phagocytosis, auto/xenophagy, cellular
cytotoxicity, chemoattraction of immune cells, induction of
memory T-cells, angiogenesis and wound healing (28, 29,
40-42, 46, 47). AMiPs also possess immunoregulatory effects
by suppressing pro-inflammatory cytokines, down-regulating
toll-like receptor (TLR) expression, and by neutralizing
endotoxins (27, 28, 42, 46, 47). 

In humans, 1,25(OH)2D3 significantly enhances the
expression of two antimicrobial peptides, called cathelicidin
and defensin-4B (27-29, 40, 49, 50). Importantly, AMiPs act

synergistically with 1,25(OH)2D3, enhancing innate immune
functions, as well as down-regulating inflammation, and
adaptive immune regulation. In a counter-measure, bacterial
toxins reduce cathelicidin expression (51). Interestingly, in
contrast to humans, mice devoid of sun exposure, regulate
cathelicidin expression independently of 1,25(OH)2D3 (52). 

Secretory immunoglobulin A (sIgA), another biochemical
barrier of skin and mucosa, is supported by 1,25(OH)2D3
rather indirectly by inducing the expression of
immunoglobulin A fragment crystallizable (IgA Fc) receptor
on phagocytes leading to enhanced binding of sIgA (53-55).
Furthermore, 1,25(OH)2D3 induces the C-C motif chemokine
receptor-10 (CCR10) in human B-cells, resulting in
enhanced B-cell differentiation to IgA-secretory cells, with
potential for homing to the gut (56, 57). 

Auto/Xenophagy as an Important 
Cellular Rheostat and its Relation to
1,25(OH)2D3 and Cathelicidin

Autophagy, in infection also named immuno- or xenophagy,
is essential for cell and immune functioning (58-62).
Damaged material (e.g. cell or tissue) is degraded in a
multistep process, with its products being used for functional
adaptation, recycling of building blocks, and energy
production (58, 60). Autophagy functions like a rheostat,
linking internal and external conditions to cell-regulatory
pathways (60, 63). 

Distinct autophagic steps (initiation/induction with
nucleation; elongation and closure of the autophagosomal
double-membrane; maturation and fusion with the
lysosome), generate the auto(phago)lysosome, which
degrades or extrudes the ingested material with greater
efficacy than the phagolysosome (52, 58, 60, 62, 64). Three
cell signaling systems initiate auto/xenophagy. Firstly,
inhibition of mammalian target of rapamycin (mTOR)-
AuTophaGy-related-1 (ATG1) complex; secondly, the
beclin1/class III phosphoinositol-3 kinase C3/vacuolar
protein sorting associated protein (PI3KC3)/VPS34) complex
(58, 65); and thirdly, the AuTophaGy-related proteins ATG5-
ATG12-ATG16L1 and ATG7-ATG3-ATG8/microtubule-
associated protein 1A/1B-light chain 3 (LC3)/gamma-
aminobutyric acid receptor-associated protein complex
(GABARAP) (59). These signal systems respond to stress by
activating TLRs, or nucleotide-binding oligomerization
domain (NOD)-like receptors, nuclear factor-ĸB (NF-kB),
and pro-inflammatory cytokines, such as interferon-gamma
(IFN-γ) and tumor-necrosis factor-alpha (TNF-α), as well as
by elevating intra- or subcellular calcium with subsequent
activation of adenosine monophosphate-activated protein
kinase (AMPK) (59, 63, 66, 67). 

Importantly in autophagolysosomes, self- and non-self-
peptides are joined to antigen-presenting molecules (58, 62),
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Figure 1. Vitamin D3 repletion ensures effective microbial elimination,
yet combined with prompt protective anti-inflammation and
immunoregulation. 
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Figure 2. The most important direct and indirect cooperative, and in part, bi-directional immune effects of vitamin D3 pathway. 25-OHD3 25-
Hydoxyvitamin D3; 1,25(OH)2D3 1α,25-Dihydroxyvitamin D3; VDR vitamin D receptor; mDC myeloid dendritic cell, NK T-cells Natural Killer T-cells.

Figure 3. Vitamin D3-depletion results in a substantial innate immune defect, whereas the expected adaptive immune intolerance presumably is
modified by microbial immune subversion mechanisms, characterized by marked immune tolerance, in spite of smoldering chronic inflammation. A
hierarchy of further immune deregulation steps will ensue, culminating in the problem of chronic calcium deficiency with exacerbation of
immunoderegulation.



a process contributing substantially to immune control, anti-
inflammatory activity, immune memory (59, 62, 68-70), and
induction of self-tolerant T-cells (58, 65). Thymic epithelial
cells and thymocytes use effective auto/xenophagy for
positive and negative selection of T- and B-cells (71). De-
regulated autophagy has been reported to result in
autoimmune disease (62, 64) and cancer (63, 72). 

1,25(OH)2D3 enhances auto/xenophagy at multiple levels,
such as NOD2 receptor expression, ATG16L recruitment to
the site of bacterial entry (73), or PI3KC3 activation, thus
supporting initiation, nucleation and elongation of the
autophagosomal membrane (64). 

However, what is more efficient in auto/xenophagy, is the
cooperation of both 1,25(OH)2D3 and cathelicidin (26, 49, 52,
64, 66, 67, 74, 75). Both agents enhance beclin-1 gene
expression (66, 75, 76), and promote autophagosome
maturation, as well as lysosomal fusion (26, 64, 74). They also
increase acidity and protease activity in autophagolysosomes
(66, 74). Interestingly, deranged autophagy compromises
cathelicidin expression, revealing bi-directional coupling
between cathelicidin and auto-xenophagy (64). 

Auto/xenophagy further depends upon negative control
mechanisms (77). Negative control regulators include members
of the autophagy machinery itself such as ATG16L1 and
ATG5-ATG12 complex, resulting in reduced production IL-1β,
IL-18 and type I IFN-α (58, 62, 77). 1,25(OH)2D3 contributes
to the negative control by inhibiting pro-inflammatory signals
such as NF-kB, TNF-α, IFN-γ, and by promoting the cyclin-
dependent kinase inhibitor P19INK4D (64). 

Endo- and Phagocytosis are Enhanced 
by 1,25(OH)2D3 and Cathelicidin

1,25(OH)2D3 enhances endocytosis by augmented gene
expression of antigen uptake receptors, including mannose
receptor and FC-γ receptor II (CD32) (74, 78). Phagocytosis
is promoted by 1,25(OH)2D3-mediated enhancement of
macrophage maturation, lysosomal production of acid
phosphatases and hydrogen superoxide (H2O2), and by
enhanced xenophagy (1, 5, 28, 50, 79). 

Although promoting endocytosis and phagocytosis,
1,25(OH)2D3 reduces antigen presentation, T-cell activation, and
secretion of pro-inflammatory cytokines (80, 81). Cooperation
of 1,25(OH)2D3, cathelicidin and auto-xenophagy optimizes
neutralization of the endotoxin-induced pro-inflammatory TNF-
α and nitric oxide production (42, 52, 75, 82). 

1,25(OH)2D3 Induces Immune-tolerant 
Myeloid Dendritic Cells and Regulatory T-Cells 

Innate and adaptive immunity are linked to dendritic cells
(DCs) that orchestrate adaptive immune responses and anti-
inflammatory regulation (56, 83, 84). The best known DC

subtypes are myeloid (mDCs) and plasmacytoid (pDCs)
dendritic cells (56, 83, 85). 

mDCs are antigen-presenting cells (86) and carry antigen-
binding surface receptors of the major histocompatibility
(MHC) group (83, 86, 87), as well as MHCI-like-receptors,
such as the glycoprotein cluster of differentiation protein-1
family member (CD1d) (83). Activated mDCs secrete IL-12
(87, 88), and induce distinct T-cell populations such as Th1-
cells for intracellular and Th17-cells for extracellular
pathogens, and Th2-populations with regulatory T-cells
(Treg) for incompletely-destroyed pathogens (86, 87). 

Without activation, mDCs are highly dependent on
1,25(OH)2D3, which induces substantial immune tolerance
(27, 56, 83, 84, 87, 89, 90). Immature mDCS, not yet
stimulated, and their precursor cells express abundant VDRs,
in contrast to stimulated mDCs. Hence, more differentiated
mDCs, with less VDR expression, preserve their required
defensive potential (56, 84, 88). However, even on antigenic
stimulation, mDCs are more tolerant when 1,25(OH)2D3 is
present (56, 84, 88, 89). 

1,25(OH)2D3-induced immune tolerance is brought about
by down-regulation of pro-inflammatory molecules in mDCs,
such as CD40, CD80, CD86, MHCII, CD54, IL-12/IL-23p40
and the C-C motif chemokine ligand 17 (CCL17) (56, 84, 88).
In addition, immune-inhibitory molecules are up-regulated
including immunoglobulin-like transcript-3 (ILT3) and
programmed death ligand-1 (PDL-1) (56, 84). As a result,
mDCs secrete less IL-12, but more IL-10 and transforming
growth factor (TGF) (26, 56, 91), thus promoting a shift from
Th17 and Th9 to regulatory CD4+CD25+ Tregs (3, 92, 93).
Tregs express increased inhibitory receptors including FOXP3
and cytotoxic lymphocytic antigen-4 (CTLA-4) (27, 84, 94,
95). Of interest is the mutual tolerance induction observed
between DCs and Tregs (56, 96). However, the induction of a
significant Th2-polarity by 1,25(OH)2D3 has been recently
challenged (97).

1,25(OH)2D3-induced T-cell tolerance is also mediated by
direct action on activated T- cells (26, 56, 98, 99).
1,25(OH)2D3 reduces the proliferative activity of Th1 cells
by reducing the expression of pro-inflammatory cytokines
such as IL-2, IFN-γ and TNF-α (56, 98-100). 1,25(OH)2D3
also enhances T-cell secretion of IL-4 and IL-13 (90) by
inducing the stress and translation inhibitor protein cytidine-
cytidine-adenosine-adenosine-thymidine box motif(CCAAT)/
enhancer-binding protein (EBP) homologous protein (CHOP)
(101, 102), and induces important Th2 transcription factors,
such as signal transducer and activator of transcription-6, and
GATA-binding protein, and CD 200, an immunoglobulin-like
molecule on CD4+ T-lymphocytes, which inhibits Th17
differentiation (103). 

Protective mucosal tolerance is also induced by
1,25(OH)2D3 by enhancing mucosal homing of immuno-
regulatory dendritic cells (1, 28, 104-106). Stress- and
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1,25(OH)2D3-induced induction of vitamin D-up-regulating
protein (VDUP1) additionally suppresses pro-inflammatory
lymphocytes in the lamina propria (107). 

In contrast to mDCs, pDCs are specialized for virus
control via IFN-α secretion (56, 84, 89). They also induce
Tregs, yet appear to be independent of 1,25(OH)2D3 (56).
pDCs induce Tregs and adaptive immune tolerance in several
ways: i) by up-regulation of inducible co-stimulatory ligand
(ICOSL) with or without secretion of indoleamine 2,3-
dioxygenase (IDO) (84, 108), ii) by up-regulated expression
of IL-27, IL-10, and TGF-β1-mediated inhibition of Th17
polarization (84, 85), iii) by secretion of vasoactive intestinal
polypeptide (VIP) in conditions such as chronic
inflammation and/or autoimmunity (109), and iv) by thymic
stromal lymphopoetin (TSLP) by pDCs or epithelial cells
(84, 110). Tregs are also induced by retinoic acid (84, 111). 

Cathelicidin and NK cells in Innate 
and Adaptive Immunity

NK cells are activated by direct DC/NK contact and
cooperate with CD8+ cytotoxic T-cells (112, 113). Further
activating signals in a bi-directional way may be received
from and sent to macrophages, polymorphonuclear
leucocytes, T- and B-lymphocytes, mast and epithelial cells,
or as inhibitory signals from Tregs (112, 114, 115, 116). NK
cells secrete antimicrobial peptides such as α-defensin and
cathelicidin (48, 115, 117) and induce anti-inflammatory,
immunoregulatory (118) and immune-memory effects (112,
113, 115). Their maturation and function depend upon the
environmental signaling milieu (112-114, 118, 119).
However, reliable in vivo evaluation of NK cell functions is
limited by complex cell kinetics and variable signals from
the surrounding environment (114, 120, 121). ‘Exhausted’
NK effector cells were described in chronic infectious
processes (113).

Due to these complex relationships, reported effects of
1,25(OH)2D3 on NK cells remain contradictory. Some
reports describe inhibitory effects (122), with depressed NK
cell activation and cytotoxicity in rats (123-125), reduced
NK cell chemotaxis against eosinophils, and reduced IL-15-
induced IL-8 secretion (126). Others showed inhibition of
NK cell activation by 1,25(OH)2D3, but no inhibition of
cytotoxicity, with reversed inhibition after immune activation
with IL-2 secretion or exogenous IL-2 addition (127, 128).

In apparent contrast, enhanced NK cell cytotoxicity was
observed following treatment with active vitamin D3
(calcitriol) in patients on hemodialysis (129). Enhanced NK
cytotoxicity towards cancer cells resulted from 1,25(OH)2D3-
induced increase of cathelicidin (46, 48). Indirect positive
effects on NK cytotoxicity were mediated by 1,25(OH)2D3-
induced increase of glutathione synthesis (130, 131), and by
1,25(OH)2D3-induced increase of extracellular calcium levels

with elevated activity of protein kinase C (PKC) and N-
alpha-benzyl-oxycarbonyl-L-lysine thiobenzyl ester (BLT)
esterase (132). In addition, NK cell differentiation and
maturation was augmented by VDUP1 expression, an effect
that could be further enhanced by differential cellular
calcium influx (107, 133). 

Vitamin D Receptor and 1,25(OH)2D3
Are most Important for Invariant NK T-cells

NK T-cells express NK and T-cell type-specific receptors
(134, 135). Most NK T-cells belong to the subgroup of
invariant NK T-cells, also called class I NK cells (110, 136-
139), that resemble functionally of Tregs rather than NK
cells (134, 135). They are regarded as being most essential
for overall immune balance (134, 140, 141). The term
‘invariant’ refers to their semi-invariant special T-cell
receptor (TCR), with an invariant alpha and a restricted beta
chain (140). Differently from conventional T-cells, they
constitutionally secrete IL-4 and IFN-γ, and augment
secretion rapidly after immune challenge (134-136). 

IL-4 is important for immune B-cell activation (142) and
prevents immune overstimulation, chronic inflammation and
autoimmunity (136). In contrast, IFN-γ is important for viral
clearance, further immune activation, antimicrobial defense
(143, 144) and phagosome maturation (52). 

Like NK cells, invariant NK T-cells exert both immune-
activating and immunoregulatory activity, and link innate and
adaptive immune functions by a mutual and multi-
dimensional cross-talk (145-148). They augment cytotoxic
CD8+ T-cell responses by induction of CD70 expression on
dendritic cells (147). Invariant NK T-cells consist of several
subgroups with functional differences (145, 146). Their
numbers appear reduced in certain autoimmune diseases
(145, 146). Invariant NK T-cells are tightly connected to the
vitamin D pathway (100, 136-139). Development and
function of a double-positive intra-thymic invariant NK T-
cell precursor depends exclusively on intra-thymic VDR
expression and VDR-dependent induction of the non-
classical MHCI receptor CD1d (100, 136-139). CD1d is
structurally associated with β2-microglobulin, similar to the
MHCI receptor (134, 140). CD1d receptor presents self-
antigens, preferentially endogenous lipids and glycolipids
(136, 138, 141). Invariant NK T-cells are self-reactive, but
not self-destructive (134, 136-138). Whereas agonist
selection of invariant NK T-cells is completed in the thymus,
full maturation is completed in the periphery where invariant
NK T-cells preferentially inhabit the liver and spleen (140,
141, 143, 145). 

During their specific differentiation steps, invariant NK T-
cells lose CD8, often also CD4 co-receptor (100). They begin
to express NK lineage receptors, such as the activating type
II integral membrane protein receptor (NKG2D), members
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of the Ly-49 family, and finally the natural killer (NK) cell-
associated marker NK1.1 (CD161) (138) and the T-cell
memory CD44 receptor (137). During these maturation steps,
immunoregulatory properties with protection against
pathogens, cancer and autoimmunity are acquired (145, 146).
Interestingly, not only 1,25(OH)2D3, but also VDUP1 is
required for invariant NK T-cell development (133). 

Studies on mice with a knocked-out VDR revealed
reduced invariant NK T-cell numbers and reduced IFN-γ and
Il-4 secretion after antigen challenge (100, 136, 149, 150).
Cell maturation was compromised, with inability to up-
regulate CD44+ and NK1.1+ receptors (100, 138, 149-151).
Vitamin D3-deficient wild-type mice had reduced numbers
of invariant NK T-cells due to increased apoptosis in the
thymus, yet after vitamin D3 supplementation had almost
normal cellular function (100, 106, 138, 150). However,
substitution of 1,25(OH)2D3 did not fully-restore invariant
NK T-cell numbers, an effect even transferred to their
offspring, possibly due to epigenetic changes induced by
vitamin D3 deficiency (150). 

Both VDR- and vitamin D-deficient animals were prone
to develop inflammatory bowel disease and experimentally
induced encephalomyelitis (32, 100, 106, 149). 

Intra-epithelial CD8αα TCRαβ Cells are 
Invariant NK T-cell-equivalent gut Mucosa 
Cells and Essential for Local Immune Balance 

In the gut epithelium, a cell population has been found to
functionally resemble invariant NK T-cells (32, 100, 106, 136).
They also develop from the same intra-thymic invariant NK
T-precursor cell. Like invariant NK T-cells, they depend upon
intra-thymic agonist selection, they are self-reactive without
self-destruction, and exhibit phenotypes of regulatory or
memory cells (32, 100). In contrast to invariant NK T-cells,
they express a gut-specific homodimeric CD8+αα chain in the
presence of IL-15 (152), and are identified as
TCRαβ+CD8αα+ intraepithelial lymphocytes (100, 106, 136). 

Gut mucosa of VDR-knockout animals contains only half
as many CD8+αα cells, and the CD4/CD8αα intraepithelial
lymphocytes are totally absent, presumably due to failed gut
homing (3, 100, 106, 136). 

Activated B-cells Express VDR, and 
B-cell/invariant NK T-cell Interactions 
Modulate Immune Responses

Activated B-cells, like activated T-cells, express VDR.
Mediated by their antigen-specific B-cell receptor, B-
lymphocytes also present antigens and support phagocytosis
(153, 154). Finally, activated B-cells secrete cathelicidin, and
by interaction with 1,25(OH)2D3 and cathelicidin, they
contribute to optimal immune defense and balance (155, 156). 

1,25(OH)2D3 directly inhibits B cell proliferation by
stabilizing the cyclin-dependent kinase inhibitor p27 (157).
It also inhibits the differentiation of ‘post-switch’ memory B-
cells and plasma cells, and reduces immunoglobulin
production and secretion, e.g. by inhibition of CD40
signaling (56, 157, 158), particularly of IgE (158).
1,25(OH)2D3 promotes B-lymphocyte apoptosis, IL-10
secretion, and expression of CCR10 (56, 157). 

Of importance, several types of B-cell/invariant NK T-cell
interactions have been reported. Firstly, invariant NK T-cells
support B-cell antibody production and proliferation of
memory B-cells, even without CD4-T-cell help (159).
Secondly, invariant NK T-cells reduce proliferation and
promote apoptosis of splenic self-reactive, CD1d- and IL-18-
expressing marginal zone B-cells (MZBs) possessing innate
autoimmune potential (160-163). Thirdly, invariant NK T-
cells enhance proliferation of immunoregulatory follicular B-
cells (162), while conversely, MZBs and DCs activate
invariant NK T-cells (164). 

In addition, high surface-expression of CD1d on
immature B-cells appears essential for the proliferation and
differentiation of invariant NK T-cells (165). Patients with
systemic lupus erythematodes (SLE) have a B-cell-specific
subcellular transport defect of CD1d causing reduced
amounts of surface CD1d. They also have reduced invariant
NK T-cell numbers with diminished IL-2 stimulation and
diminished IFN-γ and TNF-α secretion, while IL-10
secretion is augmented (165). This transport defect was not
found in other immune cells. An intrinsic invariant NK T-
cell defect was excluded in these experiments. For
unknown reasons, normal CD1d surface expression on
other cell types, such as cortical thymocytes, lymph node
mantle zone and spleen MZBs, and resting monocytes
could not compensate for this SLE-specific intrinsic B-cell
defect (165). Most interestingly, patients with SLE who
responded to rituximab treatment showed restored CD1d
characteristics in immature CD1dhi B-cells and
normalization of invariant NK T-cell numbers, activation
and function (165). 

Discussion

As shown here, vitamin D3 levels, metabolism and
physiological immunoreactivity are intimately related.
Insufficient levels and activities of D3 can cause immune
dysregulation, resulting in various diseases, and can
negatively influence the course of a variety of diseases. 

Initial symptoms of low 25OHD3 levels are intermittent
fatigue and recurrent infections which remit seasonally or
after holiday. Insidiously, chronic fatigue syndrome may
develop over time, typically promoted by stressful and
exhaustive life conditions, infections, traumatic or toxic
injuries. Hallmarks of chronic fatigue syndrome/myalgic
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encephalopathy (CFS/ME) are severe and disabling fatigue,
absence of fever in spite of general malaise resembling an
acute infection, and exertion-induced aggravation of
functional disabilities, as well as many additional symptoms,
in particular generalized pain, sleep disorder, and
gastrointestinal discomfort. Obvious organ damage is
lacking, whereas reactive depressive symptoms prevail.
Symptom shift to fibromyalgia (FMS) seems to be the rule
when patients get older. Typically, FMS is correlated with
chronic skeletal disorders of low inflammatory activity and
neuropathic pains. Yet many people do not acquire CFS/ME
or FMS. They suffer from clear-cut diseases that are
supposed to be triggered by vitamin D3 deficiency or
insufficiency. Usually, disabling fatigue accompanies chronic
inflammatory and autoimmune diseases, as well as cancer,
whereas less severe fatigue is usually reported by patients
with chronic tissue de-generation. Severe chronic fatigue has
also been observed in psychiatric diseases. Often, patients
view fatigue as the most disabling among all the other
disease symptoms. 

Although clues are emerging that low 25OHD3 may cause
chronic fatigue, altered lifestyle and behavior would also
explain it, in particular with respect to patients who appear
depressive or exhausted. Additionally, measurement of
chronic fatigue is highly subjective. However, the diagnosis
of depression or exhaustion is also subjective, in particular
when the differential diagnosis of CFS/FMS or FMS is not
considered. In contrast, in chronic inflammatory,
autoimmune or malignant diseases, physicians appreciate
fatigue undoubtedly as being disease-induced. In order to
overcome usual prejudice against chronic fatigue, it should
be considered that inflammation may not only induce
fatigue, but also alteration of mitochondrial function,
auto/xenophagy, or excitation-metabolism coupling due to
lowered subcellular calcium stores (22, 166, 167). 

Fortunately, an increasing number of authors acknowledge
the importance of vitamin D in immunoregulation (168-180).
Epidemiological studies report a correlation between an
insufficient level of 25OHD3 and several immune diseases,
such as chronic pulmonary infections (168-170), multiple
sclerosis (171-174), SLE (175, 180), diabetes and
cardiovascular diseases (22, 176), and cancer (7, 177-179).
Additionally, low 25OHD3 levels and elevated
immunoreactivity against Epstein-Barr virus were found
before the onset of multiple sclerosis (171), and up-
regulation of VDR and CYP27B1 was found in active lesions
(174). Low 25OHD3 levels also correlated with recurrence
of spinal inflammatory lesions (172), and reduced survival
in ovarian cancer (179). Genetic variations in enzymes of the
vitamin D pathway were found to augment the risk for
multiple sclerosis (173), and differentiated thyroid carcinoma
(178). Low 25OHD3 levels were also prevalent in patients
with FMS and CFS (2, 6, 8, 9, 11, 12, 14, 15). 

In contrast to these epidemiological studies, interventional
studies are still rare and small-sized. After one-year
treatment with 2,000 IU (50 μg)/day cholecalciferol,
inflammatory and hemostatic markers and disease activity in
SLE improved (180). A dose of 800 IU (20 μg)
cholecalciferol/day applied for 2.5-10 months improved
fatigue in patients with myasthenia gravis (10).
Rehabilitation outcomes improved after vitamin D
supplementation in those with multiple illnesses (16). 4,000
IU (100 μcg) cholecalciferol/day for one year reduced
recurrent infections of the respiratory tract significantly
(169). Importantly, a pilot study showed clearly improved
mitochondrial oxidative function after normalization of
25OHD3 levels in 12 severely vitamin D3-deficient patients
with chronic fatigue and myopathy (166). However, large
interventional studies and clear evidence for usefulness of
vitamin D3 treatment are still lacking. One cause of obvious
reluctance to undertake larger interventional studies may be
the ongoing debate and overall uncertainty about doses and
possible side-effects of vitamin D3 treatment. 

Timely diagnosis of underlying vitamin D3 deficiency or
insufficiency and adequate treatment, even at the stage of
unexplained chronic fatigue, is warranted. Measuring the
blood levels of the precursor 25OHD3 is easy and cost-
effective. In contrast, an elevated level of the active
metabolite 1,25(OH)2D3 does not indicate vitamin D
sufficiency, but might be an important clue to calcium
deficiency, presumably associated with autoimmunity (2).
Sufficiency is defined as 25OHD3 levels above 30-100 ng/ml
(75-250 nmol/l). Levels of 10-30 ng/ml (25-75 nmol/l)
indicate insufficiency, those below 10 ng/ml (25 nmol/l)
clear-cut deficiency. Therapy is equally easy. Cholecalciferol
can be applied orally, and continuous daily substitution is
recommended. The therapeutic dose ranges from 4,000 to
10,000 IU (100-250 μg)/day. Higher doses of about 10,000
IU/day, and concurrent mineral, or other co-factor
substitution are warranted in order to overcome eventual
vitamin D3 resistance, such as in calcium deficiency. In
contrast to drugs usually recommended for chronic
inflammatory, autoimmune or malignant diseases,
cholecalciferol is very inexpensive. 

Early treatment of chronic fatigue and recurrent infections
might prevent full-blown CFS/ME. Elevating 25OHD3 levels
in early stages of diseases may ameliorate the course, and
shorten the time needed for induction therapy, thus lowering
total treatment costs. Deleterious side-effects, often life-
threatening, of modern biological, cytostatic or immuno-
suppressive compounds may be avoided, or at least reduced.
Incidence of relapse and treatment resistance may decrease,
as well as the burden of disease, and therapy costs. However,
usefulness and cost-effectiveness of vitamin D3 co-treatment
needs further investigation from high-powered and carefully
designed clinical studies. 
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