
Abstract. This article reviews the selective toxicity and type of
cell death induced in oral squamous cell carcinoma (OSCC)
by hundreds of natural and synthetic compounds. Flavonoids,
coumarins, tannins, ketones and other synthetic compounds
showed low to moderate tumor-specific cytotoxicity against
human OSCC cell lines as compared with normal human oral
cells (gingival fibroblast, pulp cell, periodontal ligament
fibroblast), whereas anthracyclines, nocobactins and cyclic
·,‚-unsaturated compounds showed much higher tumor-
specific cytotoxicity. No strict relationship was found between
the tumor-specific cytotoxicity and apoptosis induction. There
was a considerable variation in drug-sensitivity among 5 OSCC
cell lines. OSCC cell lines were generally resistant to apoptosis
induction. The cytotoxic activity of antitumor agents is affected
by various factors related to the compounds themselves, the
cells and their environments. Systematization of the
relationship between these factors and tumor-specificity may
contribute in the quest for more active compounds.

Oral squamous cell carcinoma (OSCC) is the fifth most
common cancer worldwide, with the number of cases
consistently increasing in developing countries. OSCC, like
other types of cancer, is a genetic disease, resulting in the

loss of differentiation, and possibly generated by the decline
of apoptotic potential and immunity (1). Aggressive OSCC
with a high score of malignancy showed reduced expression
of the tumor suppressor gene phosphatase and tensin
(PTEN) homologue deleted on chromosome 10 (2), p53
positivity and low apoptotic index (3), and increased
expression of anti-apoptotic proteins, such as survivin (4)
and Bcl-2 (5). Down-regulation of heat shock protein 27
enhanced the transformation of oral epithelial dysplasia into
OSCC, possibly by impairing the protective mechanism
against mutagenesis induced by environmental factors (6).
Carcinogenesis of OSCC is related to the overexpression of
prolyl isomerase Pin 1 (7), a stronghold for the therapy of
Alzheimer's disease. These data suggest that OSCC may be
produced by an imbalance of the regulation between cell
survival and apoptosis. 

During development, many unnecessary or harmful cells
or tissues are destroyed by apoptosis [Type I programmed
cell death (PCD)], characterized by condensation of the
cytoplasm and chromatin, DNA fragmentation and cell
fragmentation into apoptotic bodies. The apoptotic cells are
removed and degraded by phagocytosis (8). Since many
chemotherapeutic and chemopreventive agents have
induced similar morphological changes in cancer cells,
apoptosis-inducing activity has been considered as an
essential criterion for antitumor agents by many researchers. 

It was recently reported that several chemotherapeutic
agents, however, induced non-apoptotic cell death
(autophagy, paraptosis, mitotic catastrophe, necrosis) in
cancer cell lines (9-12). Autophagy (Type II PCD) is a
proteolytic system ubiquitously distributed in eukaryotic cells
which transports and degrades cellular constituents
(cytoplasmic proteins and organella) in its own endogenous
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lysosomal machinery. Autophagy is morphologically
characterized by the accumulation of autophagic vesicles
(autophagosomes and autophagolysosomes) and is often
observed when massive cell elimination is demanded or when
phagocytes do not have easy access to the dying cells (13). It
is unclear whether autophagy directly executes cell death or
exhibits the secondary effect of apoptosis (14). Paraptosis
(15), characterized by swelling of vacuoles, mitochondria and
the endoplasmic reticulum, is easily distinguished from
apoptosis by its susceptibility to apoptosis signal-regulating
kinase 1 (ASK1)-interacting protein (AIP1)/Alix, but not
from autophagy (9). Mitotic catastrophe (15), induced by the
breakup of the check-point mechanism, is characterized by
the appearance of multinuclear cells, elevated permeability
of the mitochondrial membrane and caspase activation. In
contrast to apoptosis, however, mitotic catastrophe is not
inhibited by caspase inhibitors or over-expression of Bcl-2 (9).
Necrosis is induced by the extracellular environment and is
characterized by swelling of the cells, membrane disruption,
leakage of cellular components and inflammation. 

The presence of multiple types of cell death suggests the
importance of determining a definitive strategy for the
exploration of new highly selective compounds for OSCC.
The screening of highly selective compounds should be
performed before the identification of the type of cell death
(either apoptosis, necrosis or autophagy) and the elucidation
of the cell death induction mechanism. However, there are
few investigations on the relative toxicity of antitumor agents
to both normal and malignant cells. This is true for
polyphenols (16, 17), despite the vast literature on their
antioxidant and apoptosis-inducing activities. Furthermore,
as far as we know, there is no report on autophagic cell
death induction in OSCC by antitumor agents.

Considering this background, we report here the
selective toxicity and type of cell death induced by various
natural and synthetic compounds in OSCC cell lines,
mostly based on our data. The tumor-specific cytotoxicity
index (TS) was determined by the ratio of the mean 50%
cytotoxic concentration (CC50) against normal human oral
cells [gingival fibroblast (HGF), pulp cell (HPC),
periodontal ligament fibroblast (HPLF)] to that against
human oral tumor cell lines [squamous cell carcinoma
(HSC-2, HSC-3, HSC-4, NA, Ca9-22), submandibular
gland carcinoma (HSG)]. The apoptosis induction was
monitored via internucleosomal DNA fragmentation, the
activation of caspase-3, -8 and -9, the expression of
apoptosis-related proteins (Bcl-2, Bax, Bad) and the
dysfunction of mitochondrial membrane (assayed with the
MitoCapture method). Autophagy was monitored by
determining autophagosome formation observed under
transmission electron microscopy and fluorescent
microscopy after staining with acridine orange or
transfection of LC3-GFP staining.

Tumor-specific Cytotoxicity of Natural and
Synthetic Compounds

The compounds analyzed were mostly isolated and
identified by our groups. The cytotoxic activity and TS
values of each group are listed in Table I. 

Flavonoid-related phenols. Flavones showed weak cytotoxic
activity against HSC-2 cells (CC50=45-375 Ìg/ml) (Table I).
Methoxymethyl ethers having a 5-hydroxyl group were
inactive. Chrysin showed specific cytotoxicity to HSC-2
(CC50=63 Ìg/ml) and HSG cell lines (CC50=156 Ìg/ml), as
compared to HGF (CC50=345 Ìg/ml), yielding the TS value
of 3.2. Since chrysin has both a hydrophilic A-ring and a
hydrophobic B-ring (with no hydroxyl group), this selective
action might be due to the presence of both hydrophilic and
hydrophobic domains in the same molecule (18). Similarly,
eugenol (4-allyl-2-methoxyphenol), which has both hydrophilic
and hydrophobic groups in the molecule, showed weak
cytotoxicity to HSC-2 and HSG cells (19). Many flavonoids
have hydrophobic groups (such as a prenyl or geranyl group
and 2,2-dimethylpyran ring) and hydrophilic groups (such as a
hydroxyl group). Most pryranoflavones and their derivatives,
and prenylated or geranylated flavones, were cytotoxic, but
showed weak tumor specificity (TS=0.3-2.3). Pyranoflavones,
which exhibited higher cytotoxic activity, have a hydrophobic
group (3-prenyl or Á-hydroxyisoamyl group) and a hydrophilic
group (2'-OH). This 2'-OH group is in the vicinity of a 2,2-
dimethylpyran ring (D-ring). Prenylflavonols, which are also
highly cytotoxic, have two domains which contain hydroxyl
group at ortho-position of the prenyl group. This suggests that
the presence of both hydrophobic and hydrophilic groups
within the molecule is necessary for cytotoxic activity.

Licorice and Morus flavonoids in general have both
hydrophilic and hydrophobic moieties. For example,
gancaonins S and U have a hydrophilic B-ring and
hydrophobic prenyl group(s) in the A-ring. Licochalcone B, a
chalcone derivative without an isoprenoid group, showed the
highest TS value of 31.7. Isoprenoid-substituted chalcone,
prenylated isoflavone and genistein had higher cyotoxicity, but
without high tumor-specificity, suggesting that the prenylation
itself is not necessary for the tumor-specificity (20).

Flavonoids with isoprenoid substituents, sanggenol M,
sanggenon C and sanggenon B, had lower TS values (2.3-
2.7). More hydrophobic 2-arylbenzofurans exhibited much
weaker cytotoxicity and low TS value (1.0-1.5) (21).

Among the benzophenones, compounds with two
isoprenoid groups had higher cytotoxicity than the
monoprenylated compound, but with small TS values [1.2-
1.3]. For the xanthones, 1,3,5,6-tetrahydroxyxanthones, with
a 1,1-dimethylallyl group at the C-2 position and a prenyl
group on the B-ring, had the highest cytotoxicity. Xanthones
gave marginal TS values (1.1->2.0) (22). 
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Anthraquinones exhibited relatively higher TS values.
Among them, emodin and aloe-emodin, without
glycosylation, were the most potent (TS=8.5 and >18.6,
respectively). On the other hand, other anthraquinone
glycosides (TS=1.0->3.4), phenylbutane glucosides

(TS=1.5-3.3), glucosides of a stilbene (resveratrol)
(TS=1.0-2.6) and naphthalene glucosides (TS=1.1->1.4)
were less active. These data suggest that the glycosyl
moiety is not required for higher tumor-specificity
expressed by anthraquinones (23).
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Table I. Comparison of tumor-specificity.

Group TS (mean±S.D.) na Ref.

Flavonoids
Flavones, flavonols, isoprenylated flavonoids 1.2±0.6 (0.3~3.2b) 36 18, 19
Flavonoids 4.0±7.0 (0.8~31.7) 18 20

3.0±1.0 (1.4~4.0) 5 25
Isoprenylated flavonoids 2.3±0.4 (1.6~3.0) 11 21
2-Arylbenzofurans 1.2±0.2 (1.0~1.5) 6 21
Benzophenones 1.7±0.4 (1.2~2.3) 5 22
Xanthones 1.3±0.4 9 22
Anthraquinones 3.8±4.9 (1.0~18.6) 13 23
Phenylbutanone glucoside 2.4 (1.5~3.3) 2 23
Stilbene glucoside 1.8±0.8 (1.0~2.6) 3 23
Naphthalene glucosides 1.3 (1.1~1.4) 2 23
Isoflavones and isoflavanones 1.9±0.5 (1.1-2.8) 11 24
Stilbenes 3.0±1.2 (1.4~4.7) 6 25

Coumarins 2.4±3.0 (1.0~11.0) 23 27

Tannin-related compounds
Procyanidins 4.8±2.3 (1.0~7.4) 6 28
Flavonoids 1.1±0.1 (1.0~1.2) 4 28
Monohydrolyzable tannins 1.5±0.5 (1.0~2.5) 7 29
Oligomeric hydrolysable tannins 1.4±0.2 (1.2~1.5) 3 29
Macrocyclic ellagitannins 4.4±2.7 (2.3~8.2) 4 29

Terpens
Triterpenes 1.5±0.7 (0.7~2.8) 8 31
Triterpene aglycones, glycosides 1.6±0.5 (1.0~2.4) 10 32
Triterpene glycosides 1.2±0.2 (1.0~1.6) 11 32
Triterpenes, triterpene glycosides, chromones 1.0±0.1 (0.8~1.3) 20 32
Cycloartane glycosides 1.1±0.2 (0.9~1.4) 7 32
Furostaol glycosides 2.5±4.1 (0.4~17.0) 17 32

Ketones
·,‚-Unsaturated ketones 1.2±0.3 (0.6~1.9) 26 33
Cyclic ·,‚-unsaturated ketones >229.0 1 37
·-Hydroxyketones 5.7±6.0 (1.0~17.6) 8 38
‚-Diketones 1.8±1.4 (0.3~6.3) 22 39
Trifluoromethylketones 2.6±1.6 6 41 
Azulenequinones 2.6±2.3 (1.0~10.2) 27 42
Tropolones 2.6±1.8 (1.0~9.9) 27 43

Bacterial products
Anthracyclines >167±89 4 54
Mitomycin C >29 1 55
Bleomycin, peplomycin >3.8 2 55
Nocobactines 62.0 (43.9~80.0) 2 56
Others Azulenes 1.7±1.0 (0.8~5.7) 27 44 
Trihaloacetylazulenes 6.5±10.7 26 45

1.6±0.6 20 46 
Berberines 3.8 (3.6~4.0) 2 47
3,5-Dibenzoyl-1,4-dihydropyridines >43.0 (>33~>53) 2 48
Styrylchromones 7.3±6.1 (1.1~17.4) 6 49
Isoxazole derivatives 1.2±0.2 (0.9~1.6) 24 32

aThe number of compounds analyzed; brange.



Among 11 isoflavones and isoflavanones from Sophora
species, tetrapterol G had the highest cytotoxic activity,
followed by isophoranone, secundiflorol E, sophoraiso-
flavanone A, secundiflorol D, secundifloran, secundiflorol A,
sophoronol, secundiflorol F, daidzein and genistein. These
data suggest that compounds with two isoprenyl groups (one
in the A-ring and the other in the B-ring) or ·,·-
dimethylallyl group at C-5' of the B-ring should have higher
cytotoxic activity (24). The cytotoxic activity of these
compounds reached its maximum level when log P was
around 4 (24). Secundiflorol A had the highest TS value of
2.8, followed by genistein (TS=2.4). Tumor-specificity was
not directly coupled with cytotoxic activity. Compounds with
an intermediate magnitude of cytotoxic activity had higher
TS values.

Stilbenes (resveratrol, piceatannol, rhaponticin), stilbene
trimers (sophorastilbene A, (–)-Â-viniferin), a stilbene dimer
((+)-·-viniferin) (TS=1.4-3.6) and flavonoids (kaempferol,
fisetin, quercetin, isoliquiritigenin, butein) (TS=1.4-4.7) gave
lower TS values. These compounds induced activation of
caspase-3, -8 and -9, and internucleosomal DNA
fragmentation in HL-60 and HSC-2 cells (25). These data
suggest that the stilbene structure is not an important factor
in determining tumor specificity or apoptosis induction.
Recently, resveratrol, piceatannol, fisetin, quercetin,
isoliquiritigenin and butein have been shown to prolong the
life-span of Saccharomycess cerevisiae through the activation
of NAD-dependent protein deacetylase (26).

Coumarins. Coumarin itself and its 7-hydroxy-, 6-methoxy-7-
hydroxy and 5,6-dimethoxy- derivatives were relatively non-
toxic to all cell lines. Its 6,7-dihydroxy derivatives (esculetin)
revealed a tumor cell line-specific cytotoxicity (TS>5.1) (27).
Among the eight 4-methylcoumarin derivatives, the most
potent and tumor-specific cytotoxicity was observed in the
6,7-dihydroxylated molecule only. Although the TS value for
all four ortho-dihydroxycoumarins exceeded 5, such was not
the case for ortho-dihydroxylated reference molecules such as
caffeic acid and gallic acid. These data suggest that 6,7-
dihydroxycoumarin represents a specific pharmacophore
moiety suitable for designing tumor-specific cytotoxic agents.
Higher tumor-specificity of 4-methyl (TS>8.3), 3,4-dimethyl
(TS>9.3) and 3,4-cycloalkyl derivatives (TS>11.0) than 6,7-
dihydroxycoumarin may be due to their higher lipophilicity.
If such were the case, it should be possible to design more
potent compounds by appropriate substitutions in the 3
and/or 4 positions of the molecule (27). 

Tannin-related compounds. Among procyanidines and related
flavonols from Eriobotrya japonica calli, procyanidin B-2
(MW578) (TS=5.8), procyanidin C-1 (MW866) (TS=>6.7)
and procyanidin oligomers (MW3170) (TS>7.4) from intact
leaves of Eriobotrya japonica had higher cytotoxicity and

tumor-specific cytotoxicity against oral carcinoma than did
catechin (MW 290) (TS=1.0), (–)-epicatechin (MW290)
(TS=4.0) and (–)-epigallocatechin gallate (EGCG) (MW458)
(TS=4.1). This suggests that a highly condensed structure
contributes to an increase in tumor-specificity (28).

Among hydrolyzable tannins (which contain glucose in the
core of the molecule), oligomeric hydrolyzable tannins
(gemin A (MW1873), agrimoniin (MW1871), alienamin B
(MW1854)) had an approximately two-fold higher
cytotoxicity (CC50=0.10-0.17 mM) than monomeric
hydrolyzable tannins (pentagalloylglucose (MW941),
tellimagrandin I (MW786), tellimagrandin II (MW939),
pedunculagin (MW785), chebulagic acid (MW955),
casuarinin (MW937), camelliatannin A (MW1056))
(CC50=0.042-0.53 mM). Macrocyclic hydrolyzable tannins
(oenothein B (MW1568), woodfordin C (MW1721),
camelliin B (MW1721), woodfordin D (MW2506)) exhibited
one order higher cytotoxicity (CC50=0.026-0.060 mM) than
monomeric hydrolyzable tannins (29). The tumor-specific
cytotoxicity of macrocyclic hydrolyzable tannins (TS=2.7-8.2)
was 2- or 3-fold higher than monomeric (TS=1.0-2.5) or
oligomeric hydrolyzable (TS=1.2-1.5) tannins (29). On the
other hand, gallic acid (MW170) (TS=1.1), methylgallate
(MW184) (TS=1.3), ellagic acid (MW302) (TS=1.0) and
chlorogenic acid (MW354) (TS=1.7) had much lower tumor-
specific cytotoxicity (29, 30). Taken together, these data
suggest that a more condensed structure, with glucose in the
molecule (hydrolyzable tannins) or without (condensed
tannins), increases the tumor-specificity. 

Terpenoids. Generally, terpenoids had low tumor-specificity.
Oleanolic acid showed some tumor-specific cytotoxicity
(TS>2.8), due to its lower toxicity to normal cells (31). The
22·-methoxyfurostanol monodesmosides showed selective
cytotoxic activities against the tumor cell lines with CC50
values ranging from 0.2 to 24 ÌM, with the highest tumor-
specificity (TS=7.4, >17,4). The presence of a hydroxyl group
at the C-1‚ position may enhance the cytotoxicity.
Compounds with saturated C-25[27] are far less cyotoxic,
indicating that the C-25[27] olefinic group is of importance
for potent cytotoxic activity. On the other hand, ursolic acid,
2·-hydroxyursolic acid, maslinic acid, tormentic acid, 2·,19·-
dihydroxy-3-oxo-urs-12-en-28-oic acid, 3-O-cis and trans-p-
coumaroyltormentic acid (mixture), hyptadienic acid
exhibited much lower tumor-specificity (TS=0.7-2.2) (31).
Another 62 terpenoids showed little or no tumor-specificity
(TS=0.5-2.4) (32).

Ketones. Among 26 ·,‚-unsaturated ketones, seven simple
cycloalkenones showed higher cytotoxicity. The cytotoxic
activity declined with the introduction of methyl group at C-
3 (‚) or the addition of N-acetyl-L-cysteine (NAC), an
antioxidant, to the culture medium. This suggests that the
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cytotoxicity of ·,‚-unsaturated ketones is generated by the
interaction between the C-3 and SH group of targeted
molecules (the so-called “non-sterically hindered Michael
acceptor”). The introduction of an exocyclic double bond
enhanced the cytotoxicity. 4,4-Dimethyl-2-cyclopenten-1-one
showed some tumor-specificity (TS=1.9) whereas other
unsaturated lactones were moderately tumor-specific
(TS=1.0-1.4). 4,4-Dimethyl-2-cyclopenten-1-one reduced the
expression of anti-apoptotic protein Bcl-2 protein, but failed
to induce activation of caspase-3, -8 or -9 and inter-
nucleosomal DNA fragmentation. On the other hand, less
active compounds induced these markers (33). This suggests
that tumor-specific cytotoxicity does not always correlate with
the apoptosis-inducing activity. Recently, codeinone, an
oxidative metabolite of codeine containing a ·,‚-unsaturated
ketone backbone, induced cell death in HL-60 and HSC-2
cells, without induction of caspase activation or
internucleosomal DNA fragmentation (34). Morphinone, an
oxidative metabolite of morphine, similarly induced non-
apoptotic cell death, accompanied by a significant reduction
of mitochondrial size (35). It is not clear at present whether
this resulted from the perturbation of mitochondrial
morphogenesis or the fragmentation of mitochondria as
recently reported in Bax/Bak double knockout mouse
embryonic fibroblast (36).

Cyclic ·,‚-unsaturated ketones, such as 3-arylidene-1-(4-
nitrophenylmethylene)-3,4-dihydro-1H-naphthalen-2-ones
exhibited unusually high tumor-specificity (TS>229) (37).
Using this compound as a lead compound, we are pursuing
more active derivatives.

Among 8 ·-hydroxyketones, deferiprone (TS>17.6),
mimosine (TS>7.9), tropolone (TS>4.1) and hinokitiol
(TS=10.7) had the highest tumor-specific cytotoxicity. On the
other hand, maltol (TS=1.0), kojic acid (TS=1.4), 3-methyl-
1,2-cyclopentanedione (TS=1.3), 1,2-cyclohexanedione
(TS=1.2) had lower tumor-specificity. Deferiprone induced
the decline in the intracellular concentration of Bcl-2, the
activation of caspase-3, -8 and -9, and finally led to
internucleosomal DNA fragmentation. These activities were
diminished by the addition of a non-cytotoxic concentration
of FeCl3. In contrast, the DNA fragmentation and caspase
activation induced by maltol were both enhanced more than
6 to 7-fold in the presence of FeCl3 (38).

Among 23 ‚-diketones, 3-formylchromone was the most
tumor-specific (TS=6.3), followed by (+)- and (–)-3-
(trifluoroacetyl)camphor (TS=4.4), 4,4,4-trifluoro-1-phenyl-
1,3-butanedione (TS=3.4) and (–)-3-(trifluoroacetyl)camphor
(TS=3.3); others including curcumin were much less active
(TS=0.9-2.2). 3-Formylchromone induced internucleomal
DNA fragmentation, the activation of caspase-3, -8 and -9,
the dysfunction of mitochondrial membrane and the decline
of Bcl-2 protein expression. However, (–)-3-(trifluoroacetyl)
camphor failed to induce DNA fragmentation and caspase

activation. This indicates that tumor-specificity and apoptosis
induction do not always correlate with each other, and that
antioxidant activity may be responsible for redox-regulation
(39). The cytotoxic activity of curcumin was significantly
inhibited by the addition of an equimolar concentration of
FeCl3; to account for this a chelate complex of curcumin and
FeCl3 was proposed using the semiempirical molecular
orbital method (CAChe) (40).

Among 6 trifluoromethyl ketones, a-diketone (TS>3.5),
and two ·-hydroxyketones exhibited some tumor-
specificity (TS=4.5, 4.0) (41). These compounds induced
autophagic cell death (formation of autophagosome), but
not apoptosis (internucleosomal DNA fragmentation,
caspase activation) (41).

Among 27 azulenequinone derivatives, 3-phenoxy-
1,5-azulenequinone (TS>8.5) and 7-isopropyl-3-(4-
methylanilino)-2-methyl-1,5-azulenequinone (TS=10.2) had
highest tumor-specificity and apoptosis-inducing activity
(caspase activation) (42). Among 27 tropolone derivatives, 5-
aminotropolone was the most tumor-specific (TS=9.9) and
had the highest apoptosis-inducing activity (43).

Synthetic compounds. Among 27 azulene derivatives, 2-
acetylaminoazulene (TS>3.6), diethyl 2-chloroazulene-1,3-
dicarboxylate (TS>5.7) and methyl 7-isopropyl-2-
methoxyazulene-1-carboxylate (TS=2.4) had the highest
tumor-specificity (44). Chlorination of azulene resulted in the
elevation of both cytotoxicity and tumor-specificity, while
fluorination of the same compound was not so effective (45). 

There was no apparent difference between the cytotoxic
activity of 2-methoxyazulenes and 2-ethoxyazulenes (46).
Trichloroacetylazulenes generally gave higher cytotoxicity and
tumor-specificity as compared with the corresponding
trifluoroacetylazulenes. Substitution of chlorine, bromine or
iodine at the C-3 position further enhanced their cytotoxicity
to four tumor cell lines. Among 20 trihaloacetylazulene
derivatives, 1-trichloroacetyl-3-bromo-2-methoxyazulene and
1-trichloroacetyl-3-chloro-2-ethoxyazulene had the highest
tumor specificity (TS=>3.5 and >2.5, respectively) (46).

Berberine exhibited some tumor-specificity (TS=3.6-4.0)
(47). Two 3,5-dibenzoyl-1,4-dihydropyridines had higher
tumor-specificity, but only weakly induced apoptosis markers
(DNA fragmentation, caspase activation) (48). All 6
styrylchromones had higher cytotoxic activity against tumor
cell lines than against normal cells. Styrylchromones, with one
to three methoxy groups, had higher tumor-specificity and
water solubility (TS=5-17) and induced DNA fragmentation
and caspase-3, -8 and -9 activation (49). Twenty four 3-acetyl-
and 3-benzoylisoxazole derivatives exhibited much lower
tumor specificity (TS=0.9-1.6) (32).

Flavopiridol, a synthetic flavone, induced apoptosis (sub-
G1 DNA content, DNA fragmentation, PARP cleavage) via
activation of Bcl-x in OSCC cell lines (50).
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Antitumor antibiotics. Doxorubicin, (8S-cis)-10-[(3-amino-2,3,6-
trideoxy-·-L-lyxo-hexopyrano-syl)-oxy]-7,8,9,10-tetrahydro-
6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-5,12-
naphthacenedione), is an anthracycline antibiotic isolated from
Streptomyces peucetius var caesius and has the same
anthraquinone chromophore and glycoside structure as does
daunomycin. The cytotoxicity of doxorubicin appears to be due
to its ability to intercalate with DNA (especially with guanine
residues) (51), interact with plasma membranes (52) and take
part in the oxidation-reduction reactions (53). Doxorubicin has
been used for the treatment of cancer of the bladder, breast
(in combination with other anticancer agents) and prostate, but
is, however, suspected to be a human carcinogen. Doxorubicin,
used as a positive control in our screening system, exhibited
the highest cytotoxic activity (TS=255.0) (54). It activated
caspase-3, -8 and -9 in both HSC-2 and HL-60 cells, but only
induced internucleosomal DNA fragmentation in HL-60 cells.
Western blot analysis showed that doxorubicin did not
significantly change the intracellular concentration of Bcl-2,
Bax or Bad in HL-60 cells. Real time PCR analysis showed
that HPC cells (normal) expressed the highest amount of mdr1
mRNA, followed by HSC-2 (tumor) > HGF (normal) > HSC-
3 (tumor) > HPLF (normal) > HSG (tumor) > HL-60
(tumor). Electron spin resonance (ESR) spectroscopy shows
that doxorubicin produced no discernible radical under
alkaline conditions (pH 7.4 to 10.5) except at pH 12.5, and did
not scavenge O2

–, NO or DPPH radicals (54). These data
suggest that doxorubicin induces tumor-specific cytotoxicity
and some, but not all apoptosis markers possibly via a radical-
independent mechanism, and that mdr1 expression in the
tumor cells seems to be unrelated to the tumor-specificity of
doxorubicin (54). Combinational treatment using doxorubicin
and either one of methotrexate, nocobatcin, vitamin C, sodium
5,6-benzylidene-L-ascorbate (SBA) or sodium fluoride 
(NaF) produced additive cytotoxicity rather than synergistic
action (Suzuki et al., manuscript in preparation). Other
anthracyclines, such as mitoxantrone (TS>259) and
daunorubicin (TS>164), produced comparable tumor-
specificity with doxorubicin (Suzuki et al., manuscript in
preparation). Idarubicin exhibited slightly lower cytotoxicity
and tumor-specificity (TS=47). On the other hand, the tumor-
specificity of other groups of antitumor antibiotics such as
mitomycin C (TS>29), bleomycin (TS>3.7) and peplomycin
(TS>4.0) was much lower (55). This confirms the antitumor
potential of anthracylines for the treatment of OSCC.

Nocobactins NA-a (NBNAa) and NA-b (NBNAb) are
mycobactin-like siderophores, which may play a role in the
uptake of iron from the proteins of the host by chelation of
ferric ion (Fe3+). These compounds exhibited high tumor
specificity index (TS=80.0 and 43.9, respectively) (56). The
addition of an equimolar concentration of FeCl3 almost
completely abrogated the cytotoxicity and changed the
absorption spectra of nocobactins. Mass spectrometry and the

semiempirical molecular orbital method (CAChe)
demonstrated that one molecule of nocobatin produces a
chelated complex with one atom of iron, thus diminishing its
cytotoxicity (56). Nocobactins are promising compounds for
further study of antitumor potential in vivo, although their
biological activity is significantly affected by Fe3+

concentration in both intracellular and extracellular milieu.

Plant extracts. A lignin carbohydrate complex had no apparent
cytotoxicity to HGF cells, but was cytotoxic against oral
tumor cell lines (HSC-2, HSG). However, due to lower
cytotoxic activity against these cells (CC50>1000 Ìg/mL), the
accurate calculation of a TS value was impractical (57).
Lignin stimulated the cytotoxic action of sodium ascorbate
(58) and cytokines (TNF) (59).

Poly-herbal extracts of Himalaya (HD-12, DLH-3073)
exhibited highly tumor-specific cytotoxicity to tumor cell lines
(TS=>1070, >106, respectively). These extracts produced
radicals under alkaline condition and scavenged O2

–. The
tumor specificity and antioxidant properties suggest their
medicinal efficacy (60). The identification of the active
principle is essential. 

Type of Cell Death

Whether certain compounds induce apoptosis or non-
apoptotic cell death depends on the type of cells. Vitamin C,
hydrogen peroxide, etoposide, TNF, hyperthermia (43ÆC, 30-
60 min), UV irradiation (6 J/m2) induced internucleosomal
DNA fragmentation in human myelogenous leukemic cell
lines (HL60, ML-1, U-937, THP-1) (Group I), but not in
human erythroleukemia (K-562), T-cell leukemia (MOLT4)
(61), glioblastoma (T98G, U87MG) or human glioma cell
lines (KG-1-C) (Group II) (62). This may partially result from
the higher sensitivity of chromatin DNA of Group I cells to
endonuclease attack than that of Group II, as revealed in the
isolated nucleus system (63). Human glioblastoma cell lines
(M059J, M059K, U373-MG, T98G) were committed to
autophagy (characterized by autophagosome formation, the
accumulation of Agp8p/Aut7p and LC3 (ATG 8 homolog) in
autophagosome, and the inhibition of cell death by 3-
methyladenine, an autophagic inhibitor), upon exposure to
radiation (137Cs) (64), arsenic trioxide (65), ceramide (66) or
temozolomide (a new alkylating agent) (67). We found that
most of the compounds listed in Table I failed to induce
internucleosomal DNA fragmention in OSCC cell lines (HSC-
2, HSC-3, HSC-4). This indicates that whether cells are
committed to apoptosis or non-apoptotic cell death depends
on the type of cell. In fact, anthracyclines, with the highest
tumor-specificity, induced non-apoptotic cell death in
glioblastoma (68), acute myeloblastic leukemia (69),
cardiomyocytes (70) and breast cancer cells (71). In general,
OSCC cells are relatively resistant to Fas-mediated apoptosis;
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this may be due to a lower expression of FAS (5) or the
cellular FLICE-inhibitory protein (c-FLIP) (72). A
cyclooxygenase (COX)-2 inhibitor (NS398) induced G0/G1
arrest, but no apoptosis in OSCC cells (73). We recently found
that while 1-trichloroacetyl-3-bromo-2-methoxyazulene and 1-
trichloroacetyl-3-chloro-2-ethoxyazulene induced apoptotic
cell death (caspase-3, -8 and -9 activation, internucleosomal
DNA fragmentation) in HL-60 cells, they induced autophagic
cell death characterized by lower activation of caspases, a lack
of DNA fragmentation, vacuolization and autophagosome
formation as detected with acridine orange and LC3-GFP
fluorescence (46), suggesting the diversity of cell death type
induced in human tumor cell lines.

Another factor that determines the type of cell death is the
kind of compounds that is used. For example, epigallocatechin
gallate (EGCG) induced apoptosis cell death (characterized by
DNA strand break detected with the TUNNEL method, and
the appearance of degradation products of cytokelatin 18),
whereas 5,6-benzylidene-L-ascorbate (SBA) did not (74). ·,‚-
Unsaturated ketones (2-cyclohexen-1-one, 2-cyclopenten-1-
one, 4,4-dimethyl-2-cyclopenten-1-one, 2-cyclohepten-1-one, 
·-methylene-Á-butyrolactone, 5,6-dihydro-2H-pyran-2-one,
methyl 2-oxo-2H-pyran-3-carboxylate, codeinone, morphinone)
(33, 34) and 3,5-dibenzoyl-1,4-dihydropyridines (48) activated
caspase only marginally in HL-60 cells. Unexpectedly, 3,5-
benzoyl-1,4-dihydropyridines enhanced the expression of Bcl-2
anti-apoptotic protein. This unbalanced Bcl-2 expression
suggests the occurrence of autophagic cell death, since
autophagic cell death is not always inhibited by Bcl-2 (75).

Other Considerations

The growth of tumor OSCC cells tends to be inhibited under
hypoxic conditions, due to the induction of apoptosis
(cytochrome c release from mitochondria), which was reversed
by overexpression of hypoxia-inducible factor-1· (HIF-1·)
(76). Vitamin C, which induces hypoxia (77), may selectively
damage tumor cells. We recently found that NaF induced
apoptotic cell death in HL-60 (caspase activation,
internuclesomal DNA fragmentation) and incomplete
apoptosis (accumulation of Bad-GFP protein in the
mitochondrial fraction of nuclear periphery, without the
induction of internucleosomal DNA fragmentation) (78). We
found that external pressure, such as centrifugal force and
water pressure (used as gausi-orthodontic force), enhanced the
cytotoxicity of NaF to both tumor and normal cells (79, 80). 

There was a considerable variation (approximately 10~20-
fold) in drug-sensitivity of 5 OSCC cell lines (55). The
sensitivity to mitomycin C is in the following order (from
sensitive to resistant): HSC-2 (CC50=3.5 ÌM) > HSC-3
(CC50=9.7 ÌM) > Ca9-22 (CC50=16.4 ÌM) > HSC-4
(CC50=18.0 ÌM) > NA (CC50=37.8 ÌM). The sensitivity to
bleomycin is in the following order: HSC-2 (CC50=4.6 ÌM)

> HSC-3 (CC50=6.3 ÌM) > HSC-4 (CC50=77.4 ÌM) > NA
(CC50=91.6 ÌM) > Ca9-22 (CC50=111.6 ÌM). The sensitivity
to peplomycin is in the following order: HSC-2 (CC50=9.9
ÌM) > HSC-3 (CC50=25.2 ÌM) > NA (CC50=143.2 ÌM) >
HSC-4 (CC50=175.8 ÌM) > Ca9-22 (CC50=216.9 ÌM).

Morphological observation is a useful technique to
distinguish autophagy from apoptosis. On the other hand,
molecular biological observation for this purpose has not yet
been established. The natural polyamines putrescine,
spermidine and spermine are involved in cell growth and the
maintenance of cell viability (81). Following inhibition of
ornithine decarboxylase, a key enzyme of polyamine
biosynthesis, numerous links have been identified between the
polyamine and apoptotic pathways (81). We recently found that
the intracellular concentration of putrescine declined at the
early stage (first 0-3 hours after treatment) of apoptosis induced
in HL-60 cells by ascorbic acid, SBA (82), EGCG or etoposide
(83), or mastic (Chios Gum) (84), while that of other
polyamines (spermidine, spermine) remained almost
unchanged. The decline of putrescine seems to be coupled to
apoptosis, since putrescine levels did not change significantly
during autophagic cell death induced in HSC-4 cells by either 1-
trichloroacetyl-3-bromo-2-methoxyazulene or 1-trichloroacetyl-
3-chloro-2-ethoxyazulene (46). At present, whether the
decrease of putrescine at an early stage of apoptosis is due to
the reduced synthesis or enhanced degradation of this
polyamine is not clear. Further studying with a variety of cells
and inducers under a wide range of incubation times is
necessary to confirm whether putrescine is truly an apoptosis
marker or not. 

Conclusion

This review reveals that many factors affect cytotoxicity and
tumor-specificity (Table II). Factors in the test compounds
include the co-existance of both hydrophilic and
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Table II. Factors affecting cytotoxicity and tumor-specficity.

Origin Factor

Compound Coexistence of hydrophilic and hydrophobic groups
Presence of an isoprenyl group
Presence of a halogen
Polycyclic structure
Highly condensed structure
Lipophilicity

Cell Expression of multidrug resistant protein
Expression of drug metabolizing enzyme

Environment Serum type
Metal ion presence
Oxygen concentration
External pressure



hydrophobic groups in the same molecule, the presence of
an isoprenyl group, a halogen and/or a polycyclic
structure, a highly condensed structure, and lipophilicity.
In the cells themselves, the expression of multidrug
resistant proteins and drug metabolizing enzymes play an
important role. Factors in the environment include the
type of serum, oxygen concentration, metallic ion
presence/concentration, external pressure. Systematization
of the relationship between various factors mentioned
above and tumor-specificity may contribute to the quest
for more active compounds.
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