
Abstract. The principles of physics and precision
engineering have allowed many technologies to enter
standard treatment regimens for a range of diseases.
Recently, a new type of technology has been accredited as
safe and efficient routine procedure in dermatology in
Europe: cold physical plasma. Several accredited devices
successfully restrain the powerful energy of plasmas to make
them available for therapeutic purposes. Herein, we
introduce an introduction to the concept of cold physical
plasmas and highlight some fields of their medical
applications.

In physics, the classical states of matter are gas, liquid, solid,
and plasmas. These states can be transformed into one
another by changing temperature or pressure. The noble gas
argon, for instance, is present at atmospheric pressure and up
to a temperature of 83.5 K as a solid, up to 87.2 K as liquid,
and above this temperature as gas. At even higher
temperatures, the atoms reach kinetic energies high enough
to separate electrons from their atom. This impact ionization
has the effect that with increasing temperature, an increasing

number of free positive and negative charge carriers are
formed. In contrast to slow and positively charged atoms,
negative electrons exhibit high kinetic energies and can
therefore pass freely between existing atoms. Moreover, the
number of separated charge carriers increases with rising
temperature. Argon reaches this state above temperatures of
about 5,000 K and then forms a physical plasma (1, 2).

In this review, the physical principles of medically
applicable cold physical plasmas are presented.

Physical Definition of Plasma

Some general physical properties are characteristic for
plasmas. Due to the free charge carriers, plasma is a good
electrical conductor, can be modulated by electric and
magnetic fields, but is electrically neutral as a whole. The
transmission of electric charges emits electromagnetic
radiation. Furthermore, the light and heavy particles in a non-
thermal plasma possess different kinetic and thermal energies.

Since gas is neutral overall, it follows that the entirety of
separated particles in a plasma are also neutral. The number
of positive ions (ni) and negative electrons (ne) in the plasma
is, therefore, the same (ni = ne).

Electrostatic attraction of opposite charges and repulsion
of charges of the same polarity leads to the fact that around
a charge carrier mainly charge carriers of the other polarity
exist. This shields the charge carrier and its electric field.
The characteristic shielding length for a plasma, at which
the electrostatic field decreases by a factor of 1/e, is defined
as the Debye length (3). The Debye length (λDebye) is
calculated by the following formula, where ε0 is the
electrostatic field constant.
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ε0: electrostatic field constant (8,854×10–12C/Vm); kB:
Boltzmann field constant (1,381×10–23J/K); e: elementary
charge (e=1,602×10–19C); T: temperature; n: particle density.

Within the Debye length, one charge carrier binds several
charge carriers of the other polarity. In order to have total
electrical neutrality within the plasma, the expansion of the
plasma Lplasma must therefore be more than the Debye length.

Lplasma>LDebye

A spherical space with a radius of one Debye length has
the Debye volume. Within this volume there is more than
one equally charged particle in a plasma. In order to maintain
the overall neutrality of the plasma, significantly more
particles must therefore be present in the entire plasma than
in a Debye volume, so that all charges are neutral.

Ntotal>>NDebye volume>1

Interactions of Particles Within a Plasma

Besides heavy positively charged ionized atoms and
molecules as well as light electrons, photons with the energy
(h: Planck’s constant, and v: frequency of the photon) are
also involved in energy transfer within a plasma (Figure 1).

At the transition from an energetically higher to an
energetically lower level, energy is emitted in form of
photons. This can happen spontaneously and without external
influences, or by particle collisions with molecules, atoms,
electrons, or photons. Interactions between molecules (AB),

atoms (A,B, A* excited atom), electrons (e-, e-’), and photons
(hv) in plasma can be described by the following effects:
• impact ionization A+e– ↔ A*+e–+e–
• addition and dissociation AB+e– ↔ A*+B ↔ A+B+e–’
• excitation impulses A+e– ↔ A*+e–
• photoionization A+hv ↔ A*+e–
• photoemission A* ↔ A+hv

Technical Production of Cold Plasma

For the technical generation of plasmas, electrons are
accelerated in an electric or electromagnetic field. The
electrons are already present in the atmosphere or can be
emitted from a cathode by applying a high voltage (4). The
free electrons are then accelerated in an electric field so that
their kinetic energy is sufficient to ionize atoms by impact
ionization (Table I).
Ekin=Epot

Ekin: kinetic energy of the electron; Epot: potential energy of
the electron in the electric field; me: electron mass
9.109×10–31 kg; ve: electron velocity; U: voltage difference
that the electron experiences in the electric field

The first ionizing impact increases the number of charged
particles from one electron to two electrons and one ionized
atom. The charged particles are further accelerated in the
electric field, causing repeated collisions with other atoms and
thus the release of more charged particles. As a result, the
number of free electrons and ionized atoms increases
avalanche-like (Figure 2). In these collisions, however, very
little kinetic energy is transferred from the electrons to the
atoms, since the difference in mass between the two particle
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Figure 1. Interactions in plasma.

Table I. Clinical and demographic characteristics of patients (n=33).

Element Atomic-mass Ionization Ionization Speed of the 
(g) energy (eV) energy (J) electron for 

ionization 
(km/s)

Helium 6.64×10−24 24.6 3.94×10−18 2,940
Neon 3.35×10−23 21.6 3.46×10−18 2,750 
Argon 6.62×10−23 15.8 2.53×10−18 2,350
Nitrogen 2.32×10−23 14.5 2.32×10−18 2,250
Oxygen 2.66×10−23 13.6 2.18×10−18 2,180
Hydrogen 1.67×10−24 13.6 2.18×10−18 2,180



species is very high. In argon, for example, the mass ratio of
an electron to an atom is about 1:73,250. This small transfer of
kinetic energy to the ionized atoms is the reason why the
overall temperature in cold plasmas remains comparatively low.

The field strength of the electric field is decisive for the
kinetic energy of an electron. In addition, the free length of
path that the electron travels until collision is important. This
depends on the distance between the particles in the plasma.
If the free length of path between two collisions is too short,
the electron cannot be accelerated sufficiently and has only
minimal kinetic energy. On the other hand, if the free length
of path is too long, the number of collisions is too small, and
there are not enough free charge carriers. The mean free
length of path in the plasma depends on the particle density
and, thus, on the pressure in the plasma and the diameters of
the collision partners (5).

For the atom-electron collision in an argon plasma
generated with a microwave field of 2.5 GHz, the mean free
length of path have been determined (Table II) (6). In
alternating fields, the reversal of the field direction leads to
a deceleration of the electrons. Due to the high kinetic
energy of the electrons, however, this can be ignored since,
in the time between two changes of the field direction, a
multiple of the free length of path is covered, and collisions
occur frequently.

To obtain cold plasma, the plasma must be generated with
a high-frequency alternating field. Under these conditions, the
time required to accelerate the electrons and to collide with

atoms is too short for a significant transfer of kinetic energy
from the free electrons to the atoms to occur (7). These cold
plasmas are therefore also called non-equilibrium plasmas.

Cold Atmospheric Plasma

The development of cold plasma devices was essential for
medical applications because only plasma with a temperature
only slightly above body temperature can be used safely and
without harm to human patients. A second prerequisite was
the development and optimization of devices whose plasmas
ignite in the normal ambient atmosphere. Special ambient
conditions under vacuum or inert gas atmosphere as in
physical experimental setups cannot be used in clinical
practice. Such plasma devices are often operated with the
carrier gas argon or helium and are called atmospheric or
atmospheric pressure plasma (8). A special property of these
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Figure 2. Initial avalanche of plasma in the electric field generated by impact ionization.

Table II. Clinical and demographic characteristics of patients (n=33).

Particle Pressure Pressure Mean free path 
density (m) (pa) (bar) length (m)

2.41×1024 1.0×102 0.001 2.6×10−3
2.41×1025 1.0×105 1.0 2.6×10−6
1.21×1027 5.0×106 50.0 5.2×10−8
4.83×1027 2.0×107 200.0 1.3×10−8



plasmas is the interaction of particles at the argon/helium
plasma interface with the atmosphere. Also in this case an
energy transfer takes place, and numerous reactive oxygen
(ROS) and nitrogen species (RNS) are being formed with
oxygen and nitrogen of the ambient air. These contribute
significantly to the biological effects observed with the
application of cold plasmas and are the subject of extensive
studies in experimental plasma medicine (9, 10).

Plasma in Medicine

In industry, the use of plasma is widespread (11-13). Since
the early 1990s, research has increasingly been undertaken
at the interface between physics and the life sciences in order
to characterize the biological effects of cold plasma and to
identify new areas of application for medical use (14, 15).
Until now, cold plasma has been used in hygiene to sterilize
surgical instruments, implants and other mainly thermally
sensitive materials (16-18). Furthermore, cold plasma is also
approved for the treatment of dermatological diseases and is
used with great success, particularly in the treatment of
chronic wounds (19, 20). Other areas of application in
surgery, oncology, and dentistry are the subject of current
investigations and point to some very promising possibilities.

The biological effects are manifold and far from being
fully understood. In addition to electromagnetic radiation,
ROS and RNS appear to be essential inductors of biological
cell responses. Disturbances of cell membrane functions and
the activation of cellular redox systems lead to serious
impairments in cellular physiology and regulation (21, 22),
which ultimately spurs the induction of programmed cell
death (apoptosis) (23). Cold plasma is therefore highly
suitable for the inactivation of neoplastic and malignant cells
as well as the reduction of pathogens.

Despite numerous studies, there is no evidence of a
mutagenic and carcinogenic effect of cold plasma (24-26).
Therefore, the use of plasma - by itself or in combination
with established therapies - seems to be a promising and
innovative extension of medical opportunities. Similar to
other novel physical procedures, the devices have to be
adapted to medical requirements and constantly developed
further. Currently, there are already 4 cold plasma devices
with approved safety for medical use on the market (kINPen
MED - neoplas tools, Greifswald, Germany; SteriPlas -
Adtec Healthcare, Hounslow, United Kingdom; PlasmaDerm
- CINOGY System, Duderstadt, Germany; PlasmaCare -
Terraplasma Medical, Garching, Germany), and further
approvals are expected.

Conclusion

The development of high-frequency devices for the formation
of cold plasmas, i.e. plasmas with temperatures only slightly

above body temperature, opens the way for another physical
treatment method to enter the field of medicine. Current data
show promising application horizons for cold plasma
technology in dermatology, dentistry and oncology, and
further areas of application can certainly be expected.
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