Abstract. A functional polymorphism in the promoter region of the 5-hydroxytryptamine transporter gene (5-HTTLPR), alters its transcription. Short allele (SS) variation decreases the transcriptional efficacy of serotonin, causing psychiatric disorders, major depressive disorder (MDD) and major depression in response to stressful life events. The aim of this study was to determine the current understanding of the role of 5-HTTLPR polymorphism in the development of depressive episodes and its response to treatment. Twenty-five articles were identified from PubMed, utilizing the following keyword, 5-HTT transporter gene, polymorphism, depression, stressful condition, psychiatric disorder. All articles were read and notes were made regarding study participant, measures, data analysis and results, and were used to write this review. The distribution of the SS allele in patients is associated with an increased risk of MDD following exposure to stressful events of life. Additionally, this genetic variant is closely associated with several psychiatric conditions such as suicidal behaviour, psychoses, personality disorders, and aggressive-impulsive traits.

The human serotonin transporter gene is located on the long arm of chromosome 17 (17q11.2) and encodes for the serotonin transporter that is involved in the communication between neurons. The 5-hydroxy–tryptamine (5-HTT) gene polymorphism is due to a 44 base pair deletion (SS)/insertion (LL) in the 5’ regulatory region LPR (linked polymorphic region) that results in differential expression of 5-HTT binding sites in cell lines (Figure 1). In the human population, the frequency of the long allele (LL) of 5-HTT is approximately 57%, while that of the short allele is 43%. This polymorphism has been linked to the onset of neurotic disorders, major depression and suicidal behaviors. Such polymorphism have been regarded with particular interest because they introduce a different quantitative expression of the serotonin transporter molecules in the functionally active form. Subsequently, functional consequences arise that are reflected in the intracellular pool, and concentrations of synaptic and intercellular neurotransmitters (2). Several studies showed a significant correlation between the expression of the gene 5-HTT and environmental factors. It has been shown that serotonin transporter polymorphism in addition to stressful life events can determine the onset of depression. In the literature, 5-HTT gene polymorphism has been primarily associated with three following outcomes: i) MDD and MDD associated with stressful life events, such as cancer; ii) suicidal behaviour, and iii) response to antidepressant treatment. The etiology of MDD appear to be due to the lack of serotonergic transmission in the serotonin system. Alterations include a decrease in the level of L-tryptophan (a serotonin precursor) and alterations in the mechanism that regulates serotonin reuptake, which effects behavius such as mood, sleep, wakefulness, memory and learning. In people with depression, serotonin levels are lower than in healthy individuals, and this seems to cause depressive symptoms (3-5). The 5-HTTLPR polymorphism of the serotonin transporter (SERT) has been widely

Correspondence to: Dr.ssa Antonella Daniele, Department of Experimental Oncology, Laboratory of Analyses, National Cancer Institute-Viale Orazio Flacco 65, 70124 Bari, Italy. Tel/Fax:+39 805555259, e-mail: Antonella27@inwind.it

Key Words: 5-HTT transporter gene, polymorphism, depression, stressful condition, psychiatric disorders, review.
examined in relation to the difficulties of adaptation to stressful life events and to the possible consequence of an increased risk of developing depressive mood disorders (6-12). Depression is one of the most important psychiatric complications of cancer, affecting between 10 and 58% of patients (13). The associated depression persists long after cancer therapy and causes remarkable negative consequences, such as impairment of quality of life, increased risk of suicide, increased pain, and reduction of survival (14).

In 2009, a report by the World Health Organisation (WHO) indicated that 30-50 millions people worldwide currently live with cancer, and that the incidence of cancer will increase by 50% by 2030, with approximately 16 millions new cases in that year. The exploration of possible risk factors for depression in cancer patients is thus very important. According to the WHO, suicide is the ninth leading cause of death worldwide and the third leading cause in the people that are the ages of 15 and 34. Suicide individual, especially those, who have chosen a violent death, as well as in those with high levels of aggression and impulsivity, has been found to have a deficit in serotonergic transmission in the prefrontal cortex, reducing its ability to inhibit action of impulsive-aggressive behaviours originated in the hypothalamus and limbic system (15).

Methods

A widespread literature review was carried out and a total of 25 articles published between 1996 and 2010 using the PUBMED-MEDLINE database were selected. The key words used were as follows: 5-HTT transporter gene, polymorphism, depression, stressful condition, psychiatric disorder. Articles that dealt with polymorphism of the promoter region of the serotonin transporter were considered. Others polymorphism of 5-HTT gene were excluded from this analysis because it was not considered priority for the aim of this study. Data assessed in this review relate to the association between depression and/or psychiatric disorders and genotyping of participants, with the aim of analyzing the 5-HTTLPR gene polymorphism only in relation to its biological and genetic aspects. All articles included in this study were read carefully by at least two coauthors and notes were made regarding research design, data analysis, results and finding, and were used to write this review.

Results

Polymorphism of 5-HTTLPR, MDD, or MDD associated with stressful life events enclosed those due to cancer disease. The first association between 5-HTTLPR and major depression was reported by Lesch et al. (1), who examined 505 lymphoblastoid cell line, finding a significant relationship between subject with S allele (S/S or S/L) and neuroticism factor (anxiety and depressive symptoms and traits). Subsequently, Caspi et al. examined 867 individuals. The study focused on stressful life events which occurred between the ages of 21 and 26. The authors reported a more significant association ($p=0.02$) between homozygous S/S subjects (n=435; 51%) than heterozygous subjects (n=147; 17%) and depression, with respect to L/L subject (n=265; 31%). Homozygous S/S subjects experienced the majority depressive symptoms in the 5 years preceding their assessment at age 26 (16). The correlation between the potential relevance of the polymorphism in the promoter region of the 5-HTTLPR gene, and the risk of suffering MDD in 70 white European psychiatric outpatients with MDD and 142 healthy volunteers (HV) was studied by Dorado et al. in 2007 (17). They found that the frequency
of subjects with the 5-HTTLPR-S allele was higher ($p<0.01$; odds ratio=2.03) in MDD patients than in HV. These authors suggested that there is a greater risk of MDD for individuals carrying the 5-HTTLPR-S allele (17). In a article by Kendler et al. 2005, whether stressful life events could lead to the onset of depression and whether this could be somewhat favored by the presence of short allele in the promoter region of the 5-HTT gene were examined. They enrolled 549 subjects, male and female, with established episode of major depression and generalized anxiety syndrome (GAS) such as anxiety, nervousness, feelings of being worried, and muscles felt tense, in the last year. The results of this work emphasized that individuals with 2 short alleles (homozygous SS) at the 5-HTT locus were more sensitive to the effects of depression associated with the effects of stressful life events (SLEs) than were those with heterozygous (SL) or 2 homozygous long alleles (homozygous LL), ($p<0.01$). This suggests that the variation at the 5-HTT locus moderates the sensitivity of individuals to the depressogenic effects of SLEs largely producing an increase sensitivity to the impact of mild stressors in SS individuals (18). A recent meta-analysis by Kiyohara et al. 2010, reported a summary frequencies of the SS allele of 5-HTTLPR among Caucasian and Asians, based on the random effects model, as 42% and 40.5% respectively. Besides the distribution of the S allele, there was a significant difference between Asians and Caucasian ($p<0.001$), and the SS genotype of was significantly associated with an increased risk of MDD among the Caucasian population (19). The effect of stressful life events on depressive symptoms in young adults was found to be significantly stronger among SS or SL subjects than among LL subjects, as reported by Wurtman. Neuroimaging studies showed that those with the SS or SL alleles exhibited a greater activation of the amygdala in response to fearful stimuli than those with LL. It has been reported recently that mutations in the gene that controls serotonin synthesis in the human brain (tryptophan hydroxylase) also predispose these individuals to mood disturbances. It may be asked whether people who lack a psychiatric history should be advised to avoid stressful environments if they are found to carry the SS or SL alleles (20). In contrast with this is a study by Chorbov et al. in which 247 young adult female twins from Missouri were examined with the aim of determining whether the 5-HTT polymorphism interacts with the effect of adverse life events to increase the risk for developing

Table I. State of the literature references used to analyze the relationship between 5-HTTLPR polymorphism and major depression disorder (MDD) or MDD caused by stressful life events.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Series of cases</th>
<th>Analysis</th>
<th>Genotype-associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesch et al.</td>
<td>505</td>
<td>Association with neuroticism factor</td>
<td>S/S and S/L</td>
</tr>
<tr>
<td>Caspi et al.</td>
<td>867</td>
<td>Depressive symptoms associated with stressful events</td>
<td>SS>SL>LL</td>
</tr>
<tr>
<td>Dorado et al.</td>
<td>272</td>
<td>Increased risk of suffering major depression</td>
<td>S/S</td>
</tr>
<tr>
<td>Kendler et al.</td>
<td>549</td>
<td>Association between major depression and generalized anxiety syndrome</td>
<td>S/S</td>
</tr>
<tr>
<td>Kiyohara et al.</td>
<td>19</td>
<td>Increased risk of MDD among Caucasian population</td>
<td>S/S</td>
</tr>
<tr>
<td>Wurtman et al.</td>
<td>20</td>
<td>The effect of stressful life events on depressive symptoms in young adults</td>
<td>S/S</td>
</tr>
<tr>
<td>Chorbov et al.</td>
<td>247</td>
<td>Increased risk of developing MDD following adverse life events</td>
<td>S/S</td>
</tr>
<tr>
<td>Schillani et al.</td>
<td>126</td>
<td>Outset of MDD in patients with early breast cancer and terminally ill patients with different type of cancer</td>
<td>L/L</td>
</tr>
<tr>
<td>Grassi et al.</td>
<td>145</td>
<td>Increased risk of MDD following diagnosis of breast cancer</td>
<td>None</td>
</tr>
</tbody>
</table>

Table II. List of literature references which analyze the relationship between 5-HTTLPR polymorphism and suicidal behaviour.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Series of cases</th>
<th>Analysis</th>
<th>Genotype-correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anguelova et al.</td>
<td>1599</td>
<td>Association with suicidal behaviour and impulsive trait</td>
<td>S/S</td>
</tr>
<tr>
<td>Lyn PY et al.</td>
<td>379</td>
<td>Association with violent suicide and suicide attempt</td>
<td>S/S</td>
</tr>
<tr>
<td>Li D et al.</td>
<td>32</td>
<td>Association with suicidal behaviour</td>
<td>S/S</td>
</tr>
<tr>
<td>Bah J et al.</td>
<td>9</td>
<td>Association with the brain serotonin transporter in suicide attempt</td>
<td>S/S</td>
</tr>
<tr>
<td>Neves et al.</td>
<td>351</td>
<td>Association with suicidal behaviour and BPD (bipolar disorder)</td>
<td>S/S (SB); None (BPD)</td>
</tr>
<tr>
<td>Helbecque</td>
<td>134</td>
<td>Association with suicidal behaviour</td>
<td>None</td>
</tr>
<tr>
<td>Pungergic et al.</td>
<td>268</td>
<td>Association with suicidal behaviour</td>
<td>None</td>
</tr>
<tr>
<td>Courtet et al.</td>
<td>166</td>
<td>Association with non-violent suicidal behaviour</td>
<td>None</td>
</tr>
</tbody>
</table>
depression; They found that L allele was associated with a statistically significant (p>0.0001) increase in MDD (21). Some authors, however have focused their attention on another aspect of the onset of depressive syndrome, that which occurs following a diagnosis of cancer. Cancer patients who survive this serious disease may develop major depression when they become aware of having cancer. Schillani et al. observed a series of 53 consecutive early breast cancer patients and 73 consecutive terminally ill patients who were affected by different types of advanced cancer. The authors analyzed the correlations between SERT polymorphism and mental adjustment to cancer, by assessing Mini–Mac Hopelessness–Helplessness (HH) scores in relation to 5-HTTLPR polymorphism in two groups of cancer patients. Their results showed a significant correlation between HH scores in depression and early breast cancer patients carrying the L/L variant only (22). The results concerning this aspect, are in contrast with what has been described by others authors, because in this work L allele to be associated with a depressive illness after cancer. On the others hand, Grassi et al. 2010 did not find a possible association between 5-HTTLPR polymorphism in conjunction with life events and depression in diagnosed breast cancer (23).

Polymorphism of 5-HTTLPR in suicidal behaviour and borderline personality disorder. Several lines of evidence suggest that suicidal behaviour such as others psychopathologies have a genetic component. Evidence of genetic involvement comes from studies of family history of suicide (24), and more definitively from twin and adoption studies (25). Aggressive and impulsive traits, alcoholism and substance abuse are also associated with serotonergic abnormalities, all of which carry an elevated risk of suicide. (26). It is therefore noteworthy that the 5-HTTLPR genotype is associated, in some but not all studies, with harm avoidance temperament, alcoholism, anxiety or impulsive traits (27).

However the literature concerning the association between the 5-HTTLPR polymorphism and suicidal behaviour is conflicting, and has reported both negative and positive findings. A meta-analyses carried out by Anguelova et al, examined 12 studies comprising a total of 1599 subjects and found that there was a significant association between the 5-HTTLPR polymorphism with low expressing S allele and suicidal behaviour (28-30). These findings have been confirmed in two meta-analyses of Lin et al. and by Li et al. In the first, a series of 379 patients, it was found that the genotypes carrying the S allele were significantly more frequent in those attempting suicide than in those not (p=.004). Additionally, the S allele was associated with violent suicide (p=0.0001) but not with nonviolent suicide (p=1.00; 31). In the second study, the authors examined 39 studies and suggested that there was a significant association between the 5-HTTLPR polymorphism and suicidal behaviour with a value of 0.0068 (overall odds ratio=0.88 (45% CI 0.8, 0.97), thus supporting the involvement of 5-HTT in the pathogenesis of suicidal behavior (32). One potential pathways by which the 5-HTTLPR genes are related to impulsivity, aggression and suicide is through observed alterations in amygdala function as the amygdalae, along with the prefrontal cortex and orbital cortex, play an important role in the emergence of violent behaviour via faulty regulation of negative emotions (33). Others studies of these attempting suicide found association between the 5-HTTLPR polymorphism and suicide attempts (34-36). Neves et al. examined 351 patients and found that those who carried the S allele made violent suicide attempts more frequently (χ²=20.2; p=0.0001) and made more suicide attempts (t=2.6; P =0.01) than those with L/L genotype. However, although they were not able to show an association between the S allele bipolardDisorder (BPD). On the other hand, in people with committed suicide in whom the diagnosis was made post-mortem, there does not appear to be an association between suicide and 5-HTTLPR (37-39). Among patients (n=166) who had previously attempted suicide the frequency of S/S genotype in those who attempted non-violent suicide were not statistically different to those in the controls (n=139) (40).

Polymorphism of 5-HTTLPR and non-psychiatric disorders. Recurrent aphthous stomatitis (RAS) is the most common oral mucosal disease, characterized by periodic painful, single or multiple ulcers that heal spontaneously.

Netto Victoria et al. investigated 5-HTTLPR polymorphism in patients with RAS compared with control subjects. They examined 69 patients affected by minor or major form of RAS, and 70 healthy subjects, finding a significant increase in the genotype of SS (p=0.05) in the group patients with respect to healthy individuals. They suggest that patients with RAS have a tendency to exhibit polymorphism associated with anxiety-related traits (41).

Polymorphism of 5-HTTLPR and antidepressant response. 5-HTT is the site of primary action for selective serotonin reuptake inhibitors (SSRIs). Several reports have demonstrated that the L/L allele polymorphism in 5-HTTLPR is associated with better selective SSRIs. The citalopram, fluvoxamine, paroxetine and setraline have revolutionized the treatment of major depressive disordered because of their favourable side-effects profiles (42). The primary mode of action for SSRIs is by binding to serotonin transporter, inhibiting its capacity to transport serotonin and thus modulating serotonergic activity. It has been determined that in terms of transcriptional activity, the L variant in the 5-HTTLPR has more than twice that of the S allele, with
important difference in 5-HTT RNA synthesis. (43). YU et al. tested the hypothesis that the 5-HTTLPR polymorphism is associated with SSRI antidepressant response by evaluating total and cluster depressive symptoms in 121 Chinese patients diagnosed with major depression. These authors reported that patients with the L/L genotype had a significantly better responses to fluoxetine (20-60 mg/day) for 4 weeks when compared with S/S carriers (p=0.002). (44)

A study by Zanardi et al. of 58 depressed Italian patients receiving paroxetine show that patients with L/L and L/S genotype, improved to a greater degree than those with S/S between 2 and 4 weeks of treatment (45). A blinded placebo-controlled study by Smeraldi et al. concerning pindolol augmentation in 102 patients not responding to fluvoxamine found that the L allele carriers (S/L and L/L) had a better response to fluvoxamine plus placebo than those with S/S (46).

Pharmacogenetic data concerning SSRIs are available, indicating that their effects are more pronounced in patients with depressive mood disorders carrying the L/L 5-HTTLPR polymorphism in comparison with those carrying at least one S allele (47, 48). Response to fluvoxamine plus pindolol did not vary by genotype. An opposing conclusion was provided by the work of Kraft et al., in a study which included 1914 subjects treated with citalopram (20-60 mg/day) for 12 weeks. This study did not find an association between any of the 5-HTTLPR polymorphism and response to citalopram (49). This date is also supported by the work of the Hu et al. (50).

Conclusion

The studies of the functionally relevant biological effects of serotonin transporter gene promoter region (5-HTTLPR) polymorphism is especially important given the current controversy about the clinical relevance of these polymorphism. A functional polymorphism in the promoter region of the 5-HTT gene, denoted 5-HTTLPR, alters transcription of the 5-HTT gene. Much work suggests that the short allele variation (SS) results in reduced transcriptional efficacy of serotonin, a variation which can lead to psychiatric disorders, MDD and major depression dependent on stressful events of life, such as cancer. However, homozygous LL individuals appear to be relatively protected. Pertaining to post-cancer MDD, the are few literature references to date that confirm a predisposition to major depression after diagnosis of cancer. There is even less data regarding depression in long-term survival or after successfully treated cancer. Caspi et al. in a much larger study, established involvement of the SERT polymorphism in the onset of major depression in cancer patients and lung cancer survivors. This work has made an important contribution to the knowledge base of the administration of drugs and the effectiveness of chemo, hormone, and radiotherapy. Although larger studies do not agree with these observations, the difference appears to be that positive studies are predominantly, prospective and examine patients in the course of the depressive disease while the negative studies are retrospective and examine the illness later in life. Additionally the relationship between the short and the long form of the 5-HTT and antidepressant response has been extensively examined; in general. In general a delay in response to SSRI treatment appears to be associated with the S genotype although the administration of the SSRI antidepressant fluvoxamine in addition with placebo effects of pindolol induced a significant reduction of the genetic effects, indicating a treatment to be applied for those who are carriers of the genotype S/S. However, the largest studies did not find an association between 5-HTTLPR polymorphism and antidepressant treatment. This could be at least in part explained by the fact that most of these studies included a large fraction of chronically or recurrently depressed individuals, which may confounded the results.

References

32 Li D and He I: Meta-analysis supports association between serotonin transporter (5-HTT) and suicidal behaviour. Mol Psychiatry 12: 47-54, 2007.

Received January 21, 2011
Revised June 20, 2011
Accepted June 21, 2011