
Abstract. Despite advances in research and treatment
modalities, colorectal cancer still accounts for around half
a million deaths yearly worldwide. Traditional and even
newer pharmaceutical therapeutic regimens are limited in
terms of tolerance, efficacy and cross-resistance. Additional
non-cross resistant therapies with non-overlapping toxicities
are needed to improve the outcome for patients with
colorectal cancer. Cancer vaccines, designed to activate
immune effectors (T-cells and antibodies) to prevent
recurrence or treat advanced cancers, have now demon-
strated clinical benefit in prostate cancer and lymphoma.
Because immune effector infiltration into colon tumours is
associated with improved clinical outcome, vaccines intended
to activate immune responses against colon cancer have
generated significant interest. This review discusses data
supportive of the immune responsiveness of colorectal
cancer, as well as the current status of colon cancer vaccines
under development including those based on whole tumour
cells or lysates, peptide or protein antigens, anti-idiotype
antibodies, viral vectors, and dendritic cells. We also discuss
challenges to colon cancer vaccine development, such as
tumour associated mechanisms for immune evasion, and how
future strategies may address these challenges. 

Colorectal cancer is the third most common cancer diagnosis
and cause of cancer-related death in the US and accounts for

more than 1 million cases diagnosed each year worldwide. It
represents more than half of all intestinal malignancies
(52.6%) and has a poor 5-year survival (64% for cancer of all
stages at diagnosis but only 11% for metastatic cancer) with
50-60% metastatic rate, despite advances in treatment
modalities (1). Surgery is the only potentially curative
treatment choice available, but is rarely sufficient in patients
with regionally advanced or metastatic disease. Traditional
pharmaceutical therapeutic regimens including chemo-
radiotherapy are limited in terms of toxicity and lack of
tumour specificity and at best reduce the death rate for stage
III disease by 30-40% (2) and prolong survival modestly in
metastatic disease. Alternative therapeutic strategies are clearly
needed and data supportive of the concept that colorectal
tumours are immunoresponsive has led to the application of
immunotherapy in the management of colorectal cancer. 

Colorectal Cancer Immunology 
and Immune Evasion

Before discussing the technologies developed to activate
immune responses against colon cancer, it is important to
describe the current understanding of colorectal cancer
immunology and immune evasion. 

Colorectal cancer activates immune responses. Colorectal
tumours clearly harbour immunogenic proteins. At least ten
tumour-associated antigens and thirty-five major
histocompatibility complex (MHC) restricted epitopes
derived from tumour antigens have been identified, potential
targets for T-cell mediated adaptive immune response (3, 4).
Antigenic stimulation leads to the generation of a small
population of antigen-specific memory T-cells, which remain
in the tissue (5). Greater numbers of infiltrating memory T-
cells have been linked to attenuation of metastatic potential
(6). Intra-tumour lymphocytic infiltration has been shown not
only to inhibit tumour growth (7) but also to improve
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survival (8-10), which suggests that the immune system is
capable of mounting an immune response to colorectal
cancer but is not always effective in sustaining it or
preventing tumour progression (11). Importantly, the patients
with the best survival had tumours with greater numbers of
infiltrating CD8 and granzyme B-expressing T-cells. 

How colorectal cancer inhibits immune responses. Similar to
other types of cancer, colorectal cancer arises through
evasion of the host’s immuno-surveillance, as a result of
weak immunogenicity or immunosuppressive effects of
tumour cells (12-15). Restoration of antitumour immuno-
logical function after tumour resection has been observed in
several studies (16, 17) suggesting that colorectal cancer has
a direct immunosuppressive effect at a molecular and cellular
level with suppression of cell mediated immunity [Th1 CD4+

T lymphocytes producing cytokines, interleukin 2 (IL2),
interferon (IFN) gamma and tumour necrosis factor (TNF)-
alpha]. The mechanism of colorectal cancer immune evasion
is multifactorial and in summary involves shift from Th1-
Th2 immune responses, loss/down-regulation of human
leucocyte antigen (HLA) class I antigen processing and
presentation, defective dendritic cell function, T-cell loss of
signalling molecules, escaping death receptors, HLA G
expression, transforming growth factor (TGF) beta, vascular
endothelial growth factor (VEGF), impaired natural killer
(NK) activity, regulatory T-cells, and complement decay
accelerating factor CD55 (18). 

White blood cell composition seems to vary in colorectal
cancer patients, with elevated percentages of CD8 T-cells in
the initial stages, but reduced numbers of total lymphocyte
count, monocyte and NK cells, IL4 and IL6 production in
advance tumour stage as well as reduced levels of IFN
gamma, TNF-alpha seen in vascular invasion. This shift in
cytokine balance has been observed by many others (16, 20-
21). TGF-beta regulates cell proliferation, differentiation,
adhesion, apoptosis and angiogenesis (22) and levels
correlate with Duke’s staging (23). Notably TGF-beta
inhibits immunotherapeutic agents including vaccines (24).

IFN-gamma, TNF-alpha and IL2 are key components of
cell-mediated immunity and released by Th1 CD4+ T-cells.
In contrast IL4, IL6 and IL10 play a major role in humoural
mediated immunity (25), through Th2 CD4+ lymphocytes.
Th1 activation and in turn cytotoxic T-cell, NK, macrophage
and monocyte activation may result in tumour rejection,
whereas Th2 activation causes the opposite effect (26). In
colorectal cancer helper T-cell responses are impaired;
reduced concentrations of Th1 CD4+ and related cytokines
(IFN-gamma, TNF-alpha, IL2) have been found in colorectal
patients, levels of which correlate with disease severity (27)
but also normal or elevated numbers of Th2 CD4+ cells (16,
28). More advanced disease is associated with more
significant imbalance in Th1/Th2 favouring Th2 responses

(29-31). Low CD4+/CD8+ ratio has been associated with a
better clinical course and 5-year survival (8).

The exact mechanism of shift in immune response from
Th1 to Th2 is still unclear and is likely to involve chronic
inflammatory changes (32) but overexpression of cyclo-
oxygenase 2 (COX-2) (33-36), histamine (37-40) and IL10
(17, 41-11) have all been implicated as affecting
angiogenesis, cell apoptosis, modulation of immune response
and hence tumourigenesis. 

Endogenous tumour synthesis and up-regulation of
histamine and histidine decarboxylase causes immuno-
suppression, again inhibiting Th1 cytokines (38) and cell-
mediated immunity (45) and correlating with tumour stage
(46). COX-2 has also been implicated in colorectal cancer
carcinogenesis by inhibiting apoptosis, increasing
angiogenesis and invasiveness, converting pro-carcinogens to
carcinogens and modulating inflammation and immuno-
suppression as well as production of Th2 cytokines which
inhibit synthesis of Th1 cytokines (35). IL10 is
overexpressed in colorectal cancer (30) and may inhibit Th1
cytokine production as well as antigen presentation to Th1
cells (41). The level of IL10 serves as a negative prognostic
factor for treatment response as well as survival (47). Further
research has highlighted the importance of p53-specific Th1
cells for improved tumour infiltration. The tumour antigen
p53 is commonly mutated and overexpressed in colorectal
cancer and p53-specific T-helper cells have been identified
as lacking cytokines such as IFN-gamma, TNF-alpha, IL4,
IL5, or IL10 (48). In contrast, tumours in patients with p53-
specific IFN-gamma-producing Th cell immunity were
associated with better leukocyte infiltration. 

The Th1 hypothesis was also supported in a recent study
by Burgdorf et al. in which increasing levels of pro-
inflammatory cytokines such as plasma GM-CSF, TNF-
alpha, IFN-gamma, IL2 and IL5 were detected in patients
with stable disease after dendritic cell vaccination (49). This
suggests that vaccine induced Th1 responses will be
important for efficacy of colorectal cancer vaccines.
Research into Th1 associated genes has shown that patients
with up-regulation of Th1-related genes had a better
prognosis possibly because intra-tumoural T-cells can modify
cancer cells and attenuate their metastatic potential. 

HLA I antigens also play a key role in tumour
immunology as they present tumour associated antigen-
peptides to cytotoxic T lymphocytes (50). While it has been
reported that some colorectal tumours lack the HLA-ABC
antigens, Diederichsen et al. showed that some tumours were
in fact weakly positive for HLA-ABC (51). They went on to
examine the pattern of HLA expression on tumour cells and
concluded that HLA I expression correlated with lymphoid
infiltration, showing that colon cancer cells had the
functional ability of an immune response but were incapable
of initiating it because of concomitant minimal HLA II
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expression and absence of other co-stimulatory molecules
(52) causing inactivation of infiltrating lymphocytes. HLA
class I expression is altered in colorectal cancer cells as a
result of mutations in the genes (53, 54) and leads to either
loss or down-regulation of their processing and presentation
function and subsequent tumour cells escape from immune
surveillance (55-57). If indeed tumour cells are unable to
initiate an immune response, stimulation of the immune
system can occur by using dendritic cells (DCs) loaded with
tumour antigen in vitro and returned to the host.

Most tumours express exclusively MHC class I, making
them amenable to CD8+ T-cell recognition and in fact
vaccination procedures involving adoptive transfer of
activated antitumour CTLs have been successful (58-59).
However, it is activation of tumour-specific CD4+ Th cells
that is likely to confer long-lasting vaccination against
tumours, as has been shown in studies after vaccination with
peptides containing tumour-derived CD4+ Th determinants
(60). In addition, CD4-knock-out mice were shown not to be
protected after vaccination (61, 62). 

Apart from HLA expression for antigen recognition, DCs
are also crucial in antigen recognition and presentation to
other immune cells. Colorectal cancer patients also observed
to have impaired DC activation within the tumour and to
have reduced numbers of peripheral DC and altered T-cell
stimulatory capability as well (63). Cancer cells produce
immune suppressive factors (VEGF, IL10, PGE 2), which
disable DC differentiation, maturation, migration and
function, hence interfering with the whole adaptive immune
cascade (64-66). Tumour-specific T-cell responses are further
inhibited by increase in pre-cursor immature myeloid cells,
which are immunosuppressive (67) and inhibit T-cell
proliferation and tumour-specific T-cell response (68). A
large number of non-functional immature dendritic cells are
thought to be produced by altered haematopoiesis caused by
tumours (69). In colorectal cancer, loss of adenomatous
polyposis coli (APC) tumour suppressor gene has been
associated with ineffective haematopoiesis, allowing hemato-
poietic progenitor cells to enter the cell cycle, leading to
exhaustion of the myeloid progenitor pool (70). DC
infiltration is also associated with improved survival (71),
whereas suppression has been linked to colorectal cancer
metastasis (13, 72). 

Regulatory T-cells (CD4+CD25+ Treg cells), also known
as suppressor cells, are a subpopulation of T-cells that act to
suppress activation of the immune system and thereby
maintain immune system homeostasis and tolerance to self-
antigens. They also play a role in suppression of tumour
associated antigen (TAA) immunity (73) through release of
immunosuppressive cytokines, such as IL10 and TGF-beta
(74) and inhibition of antigen-specific CD4+ and CD8+

cytokine production. In addition they inhibit NK and DC
functions (76, 77) and are widely present in colorectal cancer

patients (76). In contrast, regulatory T-cell suppression
increases the efficiency of the antitumour immunity (78) and
perhaps their manipulation in conjunction with other
therapies may lead to better response to treatment. In a phase
II trial with FOLFOX-4 (oxaliplatin, leucovorin and 5-
fluorouracil) and granulocyte macrophage colony-stimulating
factor and low dose IL2 in colon cancer patients, high
objective response and disease control rates were observed
in the treatment group with significant reduction in Treg cells
(79). Depletion of Treg cells has also been shown to
specifically enhance antigen-specific immune responses to
cancer vaccines in patients with CEA expressing
malignancies (80). Apart from abnormal T-cell function,
colorectal cancer patients carry atypical T-cell receptors
(TCR) with down-regulation of key signalling molecules (81)
such as CD3-z (82) and p561ck (83) and hence impaired
cytotoxic activity. 

In summary, colon cancer cells need to interact
synergistically with their microenvironment in order to
expand and metastasize. Colorectal tumours usually grow in
immunocompetent hosts, by evasion of recognition and
elimination by the immune system. The research presented
shows that colorectal tumours are often infiltrated by
lymphocytes that are themselves activated, leading to the
assumption that tumours evoke an immune response that may
not be sufficient to prevent tumour growth. The tumour
microenvironment is complex and capable of suppressive
effects in the immune system, such as HLA loss, explaining
why sometimes therapy is unsuccessful but the human
system is capable of limiting tumour growth to some extent.

These data support the need to develop vaccines that
trigger CD8+ cytotoxic T-cell lymphocyte (CTL) responses
and Th1 helper immune responses and to limit the secretion
of inhibitory cytokines or function of inhibitory cell
populations. 

Colon Cancer Vaccines

Although the concept of a preventative vaccine is appealing,
current colorectal cancer vaccines are applied to activate the
immune system to destroy tumours once they are detectable
and, therefore, are considered ‘therapeutic’. Furthermore,
vaccines are considered ‘active’ immunotherapy, that is, they
activate an immune response, rather than ‘passive’ immunity,
which occurs when immune effectors such as antibodies are
administered. 

The identification of tumour antigens led to a notable
range of approaches for generation of cancer vaccines such
as: T-cell epitope peptides, defined carbohydrates of
glycoproteins and glycolipids, antibody-based anti-idiotype
vaccines, plasmid DNA and recombinant viral vector
vaccines, allogeneic or autologous whole tumour cell
vaccines, dendritic cell-based vaccines, oncolysates or
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autologous heat-shock protein-peptide complex vaccines.
Colorectal cancer vaccines, like other tumour vaccines are
designed to either enhance anticancer immune responses
(active specific immunotherapy) or to administer immune
effectors to patients (passive immunotherapy-adaptive
cellular immunotherapy), often in combination with an
immunomodulating agent in an attempt to activate host
immune response and especially T-cell-mediated immunity
against tumour associated antigens. Viral vectors, DNA,
proteins, peptides, recombinant viruses, anti-idiotype
antibodies, have all been used among other mediators for
active specific immunotherapy. Molecular modification
techniques can be used to alter tumours to express co-
stimulators or cytokines to stimulate T-cells. Such
‘autologous’ tumour cells vaccines may have therapeutic
potential especially as preliminary studies showed improved
recurrence free interval and survival (84).

Tumour Antigens in Colorectal Cancer

The identification of tumour-associated antigens (TAA),
whether products of mutated oncogenes/tumour suppressor
genes, aberrantly expressed cellular proteins, oncofetal
antigens, altered cell surface glycolipids and glycoproteins
or cell type-specific differentiation antigens, has formed the
basis of various approach to anticancer vaccination, as TAAs
tend be present in small quantities on normal cells, if at all,
and they are in theory capable of triggering an immune
response. For vaccination to be effective, these TAAs need
to be recognised by the immune system and hence the
mechanisms of antigen processing and presentation in cancer
cells need to be understood. 

Given that tumours arise from uncontrolled growth of
normal self cells, the majority of tumour associated antigens
closely resemble self antigens. As T-cells undergo thymic
selection the majority of T-cells able to recognise self-
antigens are deleted as part of a central tolerance mechanism,
leaving behind a smaller number of T-cells with weak
affinity for self major histocompatibility antigens that would
also be able to recognise ‘self’ tumour antigens (85).
However, a limited number of TAAs do exist which are
unique to the tumour and have never been presented in the
thymus, and consequently the immune system recognises
them as ‘foreign’. 

p53 is a nuclear protein, which normally mediates cell
cycle arrest; its mutation leads to uncontrolled cell growth
and tumourigenesis. It serves as an antigen of choice for the
study of immune response to TAAs and hence the design of
anti-cancer vaccines. Studies have demonstrated that p53 has
antigenic properties that may activate T-cells and enhance
antitumour immunity (86-88). In actual fact, vaccination with
p53-specific CTLs has conferred some tumour protection in
mice (89-90), regardless of tumour origin (91-92) but the

reason why the response is ineffective in non-vaccinated
individuals remains unknown. Different mechanisms of the
mutated and wildtype antigen processing and presentation in
normal and cancer cells have been implicated. Wild-type p53
self-peptides, because of their relatively confined expression
in the cell nucleus, are unlikely to be presented on
haematopoietic cells in context with MHC class II. In
contrast, p53 expression in neonates is abundant in the
thymus and probably leads to processing and presentation by
MHC and thymic selection for self-p53-reactive T-cells (93).
Anti-p53 CTL responses in normal and p53 knock-out mice
have been investigated. In fact some wild-type p53 peptides
are presented in MHC class I during development and
mediate negative selection of corresponding p53-reactive
CD8+ T-cells (94). At the same time some peptides, even
though bound to MHC class I molecules, failed to induce
negative selection and vaccination with those peptides
promoted antitumour immunity but not auto-immunity
leading to speculation that it is possible that self p53 peptides
might have an influence on CD4+ T-cells as has been
demonstrated (95). These findings indicate that some antigens
may induce tolerance in only part of the immune system, a
fact which can be manipulated in the design of vaccines
eliciting responses against distinct antigenic peptides. 

βHCG. In contrast to other oncofoetal antigens, beta human
chorionic gonadotrophin (βHCG) is not produced by normal
colorectal cells (96-99). βHCG expression in colorectal
cancer is thought to lead to an increase in tumour
invasiveness, higher metastatic incidence and promotion of
tumour growth as well as promote neovascularisation and
suppress the immune system (52). Its presence is thus linked
to reduced survival and hence immunisation against βHCG
is appealing as it might result in humoural and cellular
immunity directed against HCG expressing tumour cells. 

CEA. Carcinoembryonic antigen (CEA) is an oncofetal
antigen that when expressed within recombinant poxviruses
has shown induction of HLA-restricted, CEA-specific T-cells
(100), suggesting that CEA can serve as a target for vaccine
development (101). CEA is abundantly present on the
majority of colon tumours and relatively absent from normal
tissue. It would thus serve as an ideal target to destroy cancer
cells without impacting on non cancer cells. However CEA
is usually present in foetal development and the immune
system shows some degree of tolerance from previous
sensitization. Anti-idiotypes were thus created, using
molecular modification techniques to create an artificial
protein and attach it to the CEA idiotype, creating a new
protein, sufficiently different from CEA that the immune
system would not identify it as normal body protein, yet
similar enough to CEA that the immune system attacks both,
killing cancer cells in the process. 
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5T4. 5T4 is a human oncofetal antigen (leucine-rich
membrane glycoprotein) highly expressed on placental
trophoblasts during foetal development but usually absent
from healthy tissue (102). It is widely present in cancers
such as colorectal, gastric, renal and ovarian (103-105) and
its presence has been correlated with poor survival (106)
possibly secondary to the enhancement of metastatic
potential (107, 108).

EGFR. Epidermal growth factor receptor (EGFR) is
overexpressed in colorectal cancer and is associated with
pour outcome (109, 110). It is a transmembrane glycoprotein
composed of an intracellular tyrosine-kinase domain, a
transmembrane lipophilic segment and extracellular ligand
binding domain, receptor for EGF and TGF-alpha. It belongs
to the EGFR family of receptors or ErbB, which comprises
four proteins encoded by the c-erb B proto-oncogene,
including EGFR (ErbB1), HER2/neu (ErbB2), HER3
(ERbB3) and HER4 (ErbB4) (111).

The HER-2/neu proto-oncogene encodes a transmembrane
glycoprotein, similar to the epidermal growth factor receptor,
whose cytoplasmic domain has tyrosine kinase activity (112).
HER-2/neu is overexpressed on many adenocarcinomas
including those of breast and ovary and is associated with
poor prognosis (113). It is also overexpressed in 20-50% of
colon tumours (114, 115). 

Gastrin. Gastrin is a hormone that stimulates gastric acid
secretion (116). In colon cancer tumours, gastrin precursors
are mainly expressed, which act as growth factors. These
precursors represent 90-100% of the gastrin peptides
produced by colon tumours, are present early in carcino-
genesis and are generally absent from healthy tissue (117).
Gastrin precursors can also contribute in the angiogenesis
process by stimulating the expression of VEGF (118). VEGF
is one of the commonest angiogenic factors released by
tumour cells and high levels have been correlated with poor
prognosis in colorectal tumours (119). Therefore, gastrin
inhibition would in theory result in inhibition of cell growth,
proliferation and metastasis

Active Specific Immunotherapy (ASI) Vaccines

I. Autologous Tumour Cell-derived Vaccines (Table I).
Autologous tumour vaccines are produced by isolating
tumour cells from an individual and processing these into a
vaccine in vitro. Autologous vaccines are usually combined
with an immunostimulant and can thus elicit a cytotoxic
immune response to cell-surface expressed TAAs. 

The oldest immunotherapies used autologous tumour cells
that were irradiated or lysed and injected intracutaneously
along with bacille Calmette-Guerin (BCG) or bacterial cell
wall products to produce an immune response against

antigens within the tumour vaccine. Isolated administration
of adjuvants resulted in non specific immune stimulation and
there were no long-term benefits in the treatment of
colorectal cancer. The difficulties in manufacturing auto-
logous tumour cell vaccines resulted in a scarcity of
randomised clinical trials. However immunisation with
specific vaccines and non specific immune adjuvants resulted
in overall prolongation of disease-free (DFS) and overall
survival (OS) (120-122).

Gray et al. were amongst the first to carry out a clinical trial
of adjuvant immunotherapy with BCG and neurami-nidase-
treated autologous tumour cells in stage B and C colorectal
cancer in 1989 (123). This trial, as well as other similar trials,
such as the Melbourne trial (124) using combined non-specific
and specific immunotherapy, failed to show any difference in
DFS or OS between treatment arms. ASI using autologous
tumour cells with an immuno-modulating adjuvant BCG
vaccine became known as OncoVAX. Hoover et al. carried out
a randomised clinical trial with irradiated autologous tumour
cells and BCG versus surgery alone with significant OS and
DFS for the vaccinated arm (84). However a subsequent study
by the Eastern Cooperative Oncology Group (ECOG) showed
no significant differences between the treatment arms. Of note,
the vaccines used in the ECOG trial were manufactured at
different sites, leading to discrepancies across sites in the
quality of the vaccine. Subgroup analysis however of the
patients that were vaccinated with the standardised criteria for
the manufacture of the vaccine, showed significant
improvement in OS. The importance of standardised criteria
for vaccine manufacture was further illustrated in a phase III
study by Vermorken et al. where disease recurrence was
significantly reduced in the vaccinated arm (120). In this large
phase III study published in the Lancet, although there was
no significant benefit of OncoVAX immunisation in operated
stage III cancer there were differences for stage II cancer; 254
treated patients also demonstrated a statistically significant
33% increase in 5-year OS (p-value of 0.014) and an 80%
reduction tumour progression rate at 18 months following
treatment with OncoVAX, but there were no prognostic
benefits in stage III patients. This may signify that
vaccination settings might have to be reviewed to include
patients with earlier stage disease. In fact, the US FDA
allowed Intracel to proceed with a phase III trial in stage II
colon cancer patients for confirmation. The first results as
published in the Lancet and in Vaccine showed statistically
significant 5-year OS rate and increased recurrence-free
survival in stage II patients (122, 125). 

Apart from live-irradiated tumour cells or lysates, virus-
infected irradiated tumour cells have also been used for the
creation of autologous colon cancer vaccines. Autologous
tumour vaccine-Νewcastle disease virus (ATV-NDV) is an
autologous tumour vaccine modified by infection with the
Newcastle disease virus. Ockert et al. compared ATV-NVD-
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treated patients to those treated with ATV/BCG, in patients
with resected colorectal carcinoma, demonstrating 97.9%
survival rate after 2 years in the ATV-NDV arm compared to
66.7% in the other arm (126). Similar differences have been
reported elsewhere (127, 128). In the majority these were
small studies, which did however show promise for the NDV
vaccine. A randomised controlled phase II/III study soon
showed that NVD vaccination lead to improved OS and
progression-free survival (PFS) for colon cancer patients
with liver metastases but no benefit in rectal cancer (129).
NDV infection of tumour cells seems to lead to improved
interaction between tumour cells and T-cells and increase T-
cell co-stimulatory potential. 

Autologous vaccines are highly likely to contain any
tumour associated antigen capable of eliciting an antitumour
immune response but these are usually present in small
numbers. In addition, autologous cancer vaccine develop-
ment in colon cancer is extremely difficult as the primary

tumour is located in a bacteria rich environment unsuitable
for harvesting autologous vaccines and most metastases are
located in the liver and other sites, thus very difficult to
access without considerable risks. This has suggested that
allogeneic tumour vaccines could be utilized, however, apart
from a single study of Canvaxin outside of its intended use
for melanoma (130), there are few data for allogeneic tumour
vaccines in colorectal cancer. Another complexity of using
tumour cell vaccines is the possibility that the re-injected
tumour, despite being rendered unable to grow, still might
secrete cytokines that have immunoinhibitory activity. Finally,
autologous vaccination strategies require immunomonitoring,
which is challenging without knowing which tumour antigens
are recognised by the immune system. 

II. Colon Cancer Vaccines Based on Defined TAAs. In order
to avoid the large amount of material in autologous tumours
that may be non-immunogenic, defined TAAs, deliverable in
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Table I. Autologous tumour cell vaccines.

Vaccine type Trial Results Reference

Autologous tumour Phase III RCT No statistically significant differences in OS or DFS between Hoover et al.
cells &BCG Adjuvant to resection the treatment arms. Cohort analysis: significant improvement in (1993) (84) 

OS (p=0.02, HR 3.97) and DFS (p=0.039, HR 2.67) in colon
cancer patients receiving ASI.

Autologous tumour cells Phase III RCT 44% (95% CI 7-66) RR for recurrence in RF period in all Vermorken et al.
&BCG Adjuvant to resection patients receiving ASI (p=0.023) as adjuvant to resection in (1999) (120)

stage II and III colon cancer. Larger impact of ASI in stage II  
disease, with significantly longer RF interval (p=0.011) and 61% 
RR for recurrences, longer RF (42% risk reduction for recurrence 
or death, p=0.032) and a trend towards improved OS.

Autologous tumour cells Phase III RCT No statistically significant differences in clinical outcomes Harris et al.
&BCG Adjuvant to resection between the treatment arms. Treatment compliance with effective (2000) (121)

immunization results in DFS (p=0.078) and OS (p=0.12) 
trends in favour of ASI.

Autologous tumour cells Phase III RCT OS 65% in ASI group. Significant benefits in stage II colon cancer. Hanna et al.
&BCG Adjuvant to resection (2001) (125)
Autologous tumour cells Phase III RCT Effect of OncoVAX as an adjuvant is statistically significant for RF Uyl-de Groot CA 
& BCG (OncoVAX) Adjuvant to resection interval (57.1% RRR), OS, RF survival in stage II colon cancer (2005) (122)

patients. No statistically significant prognostic benefits in stage 
III patients.

Autologous tumour cells Phase III RCT No difference in the OS, DFS and metastases-free survival Schulze et al.
& virus ATV-NDV Adjuvant to resection between treatment arms. Subgroup analysis: significant advantage (2009) (129)

for vaccinated colon cancer patients: OS [HR: 3.3; 95%, 
(CI): 1.0-10.4; p= 0.042] and metastases-free survival 
(HR: 2.7; 95%, CI: 1.0-7.4; p=0.047) in the ITT analysis

Autologous tumour cells Phase II RCT 2-Year survival rate 97% compared to ATV/BCG (66.7%). Ockert et al.
& virus ATV-NDV Adjuvant to resection (1996) (126)

Autologous tumour cells Phase II RCT At 18 months, 61% of the vaccinated arm developed recurrence Schlag et al.
& virus ATV-NDV Adjuvant to resection compared to 87% in the other arm. 40% Increased DTH (1992) (127)

reactivity in the vaccine arm.
Autologous tumour cells Phase II RCT ASI induced antitumour immune response is only minimally Baars et al. 
& BCG Adjuvant to chemotherapy impaired by consecutive chemotherapy. Combined treatment of  (2002) (217)

stage III patients with ASI and chemotherapy (5-FU/leucovorin)



larger amounts, or modified to enhance immunogenicity are
delivered for induction of anti-TAA antibodies or T-cell
mediated antitumour immune responses. 

Vaccines based on defined TAAs: Peptides and Viruses (Table
II). TAA identification prompted the development of
strategies for antitumour vaccination, in an effort to induce
specific recognition of the TAA and to elicit memory so that
residual tumour can be eliminated and relapse prevented.
This can be achieved by generating and persisting popu-
lations of T- and B-cells that specifically recognise and react
to the TAA. 

Various immunomodulators such as bacterial products,
cytokines, chemokines and monoclonal antibodies have been
used to trigger co-stimulatory receptors and increase efficacy. 

Viral vaccines based on defined TTAs, use a viral vector
system to deliver the TAA and sensitive the immune
response. These vaccine strategies were developed in an
effort to enhance activation of T-cells following tumour
antigen presentation using viral vectors as well as other
techniques, such as GM-CSF to enhance recruitment of
dendritic cells to the vaccination site.

βHCG: In colon cancer, βHCG (β human chorionic
gonadotrophin) peptide vaccine, CTP37-DT (Avicine) has
been used in metastatic colorectal cancer. Phase II trials
showed no significant difference between the ASI and
control group, but did show that antibody responses were
associated with improved survival (131). In addition, CTP37-
DT generated a humoural immune response against HCG
protein in 73% of the patients in the study, but cellular
responses were not measured. 

CDX 1307 is a fusion between βHCG and an antibody
against the mannose receptor currently under investigation in
an ongoing Phase I trial. There is currently a non-randomised
open label study taking place of CDX-1307, a mannose
receptor-targeted HCG-β vaccine, in patients with incurable
locally advanced or metastatic colorectal cancer among
others by Celldex therapeutics (132). Interim results suggest
that intradermal inoculation of CDX-1307 results in
localisation of the beta subunit of HCG in antigen presenting
cells. This leads to DC activation as well as cytotoxic T-cell
activity against bHCG bearing tumour cells (133).

p53: As explained previously, CTL responses are limited
secondary to central tolerance, but CD4+ T-cell responses
seem unaffected. Adoptively transferred p53-specific CD4+

Th cells supported the antitumor response against p53-
overexpressing tumours (134). Synthetic long peptide (SLP)
vaccines have been shown to be immunogenic in cancer
patients. SLP is a p53 synthetic long peptide and can be used
to inoculate colorectal cancer patients. The p53-SLP vaccine
was shown to induce p53-specific T-cell responses, the
majority being p53-specific CD4+ Th cell, in patients with
colorectal cancer in a phase I/II trial (135). Further research

is underway to improve the polarisation of the T-cell
response induced. Viral vector strategies have also been used
as antigen delivery systems to immunise patients against p53,
including adenovirus and recombinant canary poxvirus,
eliciting p53-specific T-cell responses in some patients but
limited by anti-vector immunity (136-139). Finally p53 has
also been developed into dendritic cell vaccines, where the
latter are pulsed with known p53 HLA-A2.1-inding peptides,
resulting in induction of T-cell responses in some of the
treated patients (140). 

EGFR2: EGFR mutations can enhance tyrosine kinase
activity in response to EGF and increase the efficacy of anti-
EGFR such as gefitinib or erlotinib (141, 142) and hence a
lot of research has focused on EGFR inhibitors. It can also
serve as a target TAA for vaccination. In fact it has been
shown that epitope-specific immunisation is feasible for
active anti-EGFR immunotherapy (143). A recently
developed vaccine used two chimeric, human epidermal
growth factor receptor (HER2) B-cell epitopes fused to a
promiscuous T-cell epitope and nor-muramyl-dipeptide as
adjuvant. In a phase I trial, the vaccine elicited antibody
responses in a subset of patients (144). 

Gastrin: G17DT (Gastroimmune) is an antigastrin-17
immunogen, raising antibodies that blockade gastrin-
stimulated tumour growth (145). Therapeutic efficacy of
immunisation with G17DT has been established in various
tumour settings including primary and metastatic disease
(146). Phase II trials with G17DT immunisation in otherwise
refractory metastatic colorectal cancer showed additive
effects of improved survival when combined with irinotecan
chemotherapy (147, 148).

CEA: The majority of CEA vaccines use viruses such as
ALVAC for its delivery to tissue, often in association with
co-stimulatory molecules. For example, ALVAC-CEA/B7,
is a vaccine based on a viral vector system derived from the
non-replicating canarypox virus, which has been modified
to express CEA and has been used in patients with first-line
metastatic colorectal cancer. ALVAC is different to other
vaccines in that it was constructed to express both CEA and
the B7.1 co-stimulatory molecule to enhance the antitumour
vaccine (149). B7.1 (CD80) co-stimulatory molecule
addition enables binding to CD28 on the surface of T-cells
leading to cell proliferation and cytokine release (150). In a
combination regimen with standard chemotherapy, this
vaccine resulted in increase in CEA specific T-cell
responses with no difference in clinical or immune response
amongst treatment groups (151). Chemotherapy was not
shown to have an adverse effect on CEA-specific T-cell
immunity. There are two trials in process, the first trial
(pilot phase II) assesses the safety and immunologic
activity of ALVAC co-administered with chemotherapy and
the second trial when co-administered or following
chemotherapy (phase I). 
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ALVAC has also been used as a vector to deliver Ep-
CAM. Ep-CAM (epithelial cell adhesion molecule) is an
important mediator of cell-cell interaction and influences
growth, differentiation and organisation within tissues (152,
153). KSA is a human pancarcinoma antigen, a glycoprotein
of 40 kDa, which is aberrantly expressed in epithelial
tumours (154). KSA is thought to function as an EpCAM
and it is highly expressed in colon tumours (155). The
EpCAM gene is inserted into the ALVAC virus along with
GM-CSF. Vaccination has been shown to induce a tumour-
specific cellular immune response (156). Vaccines based on
viruses such as ALVAC work through cross-presentation
rather than direct stimulation of T-cells by the infected cells
and it is difficult to determine whether they do indeed lead to
improvement of vaccine efficacy. 

Apart from ALVAC, the recombinant fowlpox virus has
also been used in association with CEA to create rF-
CEA(6D)-TRICOM. In this ex-vivo system, generated DCs
are modified or infected by a recombinant fowlpox vector to
hyper-express a triad of co-stimulatory molecules (TRICOM)
and CEA, which are then used as a vaccine. Phase I studies
showed an increase in the frequency of CEA-specific
immune response among both CD4+ and CD8+ T-cells in all
immune responders (157). Similar results were achieved with
rV-CEA(6D)-TRICOM which uses vaccinia vector to prime
an immune response and then boosts are given with rf-
CEA(6D)-TRICOM (158).

A further extension of the CEA-TRICOM approach has
been to add an additional antigen to generate PANVAC-VF.
It uses both recombinant vaccinia and fowlpox to express
both epithelial mucin 1 and CEA as well as co-stimulatory
molecules. Early clinical trials are evaluating PANVAC alone
and in combination with conventional chemotherapy and/or
radiation (159). Interest in poxviruses arose as they can
accommodate multiple transgenes. In a pilot study, patients
were vaccinated with recombinant vaccinia for CEA, MUC-
1 and TRICOM (PANVAC-V) followed by fowlpox
(PANVAC-F) as a booster eliciting anti MUC-1 and/or anti-
CEA responses through both CD8 and CD4 cells and early
evidence of clinical benefit (160). An ongoing study is
testing the role of PANVAC-VF in patients with resected
hepatic metastases of colorectal cancer (NCT00103142).

5T4: TroVax uses a tumour-associated antigen, the human
oncofetal antigen 5T4 with a pox virus vector, the modified
vaccinia virus Ankara (MVA). Pre-clinical murine models
had suggested that TroVax resulted in as high as 90%
reduction of tumour burden (161). Antitumour activity and
protection was shown to be highly dependent on CD4+ T-
cells and antibody mediated. However murine models using
CEA CD8+ cells showed that CD8+ T-cells were essential for
protection without a role in destruction of tumour cells and
CEA antibodies had no role in tumour destruction (162).
These murine models also suggested preventative on top of

therapeutic benefits, even though in mice models it is often
easier to protect mice against tumours in a preventative
setting. Mice injected with MVA expressing murine 5T4
resulted in induction of immune response against m5T4 such
that when challenged with syngeneic tumours expressing
murine 5T4 they were protected (163). In man, antibody-
mediated effector mechanisms would not be affected by
MHC class I down-regulation in tumour cells and hence
induction of 5T4-specific antibody response would be ideal
for targeting membrane antigens. The first human phase I/II
trial showed the vaccine to be safe and well tolerated
inducing 5T4-specific immune responses in 94% of the 22
participants. There was no correlation between enhanced
patient survival and MVA-specific immune responses.
Overall, 41% patients showed disease stabilisation (163). 

Vaccines based on defined TAAs: Anti-idiotype antibodies
(table III). Anti-idiotype antibodies mimic TAAs. When the
binding site of an antibody (idiotype) is recognised by the
immune system as foreign, a new antibody against the
binding site is created, which is known as the anti-idiotype.
The latter resembles the original antigen. The peptides of the
anti-idiotype’s binding site closely resemble the original
antigen peptide structure and can also be processed and
presented to T-cells resulting in the formation of antigen
specific T-cell responses (165). 

CeaVac (Titan Pharmaceuticals) is a vaccine based on
anti-idiotypic antibodies and mimics CEA. Initially, in a
phase II study (n=32) with patients with minimal residual
disease, all vaccinated patients were shown to have a high
titre of IgG and T-cell immune response against CEA (166).
In a larger phase III trial (n=631), CeaVac failed to show any
improvement compared to placebo and 5-fluorouracil and
leucovorin (167). Subset analysis showed correlation
between OS and number of injections. Recently, in a phase II
prospective multi-institutional trial, patients with curatively
resected colorectal cancer hepatic metastases received
CeaVac in combination with TriAb (human milk fat globule)
as an adjuvant but vaccination did not improve 2-year
recurrence-free survival when compared with the expected
value of 40% reported for hepatic resection alone (81).

Another similar vaccine is Onyvax-105 which uses TAA
105AD7, which is another anti-idiotype antibody what
mimics CD55 (791Tgp72) (169). CD55 is a glycosyl-
phosphatidylinositol-anchored protein that regulates
complement activation (170) and inhibits the formation of
membrane attack complex (171) protecting cells against
complement attack. Complement attack is a powerful
mechanism in the immune defence against cancer (172).
Colorectal cancer cells express a broad spectrum of CD55 to
escape from complement attack (173). Tumour cell lysis may
occur after vaccination as the vaccine is thought to stimulate
host-cytotoxic T-cell response against tumour cells
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Table II. Peptide and viral vaccines.

Vaccine type Trial Results Reference

CTP37-DT Avicine Phase II RCT Vaccination with CTP37-DT induced anti-hCG antibodies in most Moulton
Peptide vaccine patients with advanced colorectal cancer. Anti-hCG antibody (2002) (131)
with BCG induction was associated with longer overall survival (p=0.0002).
G17DT Gastroimmune Phase II adjuvant N/A Gilliam
Peptide vaccine to chemotherapy (2007) (145)
with diphtheria
G17DT Phase II N/A Rocha Lima et al.
Peptide vaccine Combination (2004) (147)

chemotherapy
CDX-1307 Phase I Ongoing Morse (2009) 

(133)
P53 Phase I/II p53-specific T-cell responses were induced in 9 of 10 colorectal  Speetjens et al.
Synthetic long cancer patients. In 6/9 tested patients, p53-specific T-cell reactivity (2009) (135)
peptide vaccine persisted at least 6 months. p53-specific T-cells isolated from the 

vaccination site were characterized as CD4+ T-cells producing both
T-helper types 1 and 2 cytokines.

P53 Phase I/II T-cell and IgG antibody responses against the vector component of van der Burg 
Recombinant the ALVAC vaccine were induced in the majority of the patients. et al.
canarypox/ALVAC immunosorbent-spot assay (ELISPOT) analysis of vaccine-induced (2002) (138)

immunity revealed the presence of IFN-gamma-secreting T-cells 
against  both ALVAC and p53.

PanVacVF Phase I PANVAC-VF is safe and is associated with the generation Gulley
Recombinant fowlpox of CD8 and CD4 antigen-specific immune responses post (2008) (160)
& Vaccinia CEA/MUC-1 vaccination. These immune responses were seen in more than 

half of patients tested.
ALVAC-CEA/B7.1 Phase II RCT 40.4% Objective clinical responses. All patients developed Kaufman
Recombinant Combination antibody responses against ALVAC; Increase in CEA-specific (2008) (151)
Canarypox virus/CEA chemotherapy T-cells as high as 50% in ALVAC with chemotherapy and booster. 

No differences in clinical or immune responses between the 
treatment groups. Chemotherapy did not affect the generation 
of CEA-specific T-cell responses following vaccination.

ALVAC-KSA Phase II RCT ALVAC-KSA, in combination with low dose local administration Ullenhag
Recombinant of GM-CSF may induce a strong, IFN-gamma T-cell response. (2003) (156)
canarypox virus/
Ep-CAM/KSA and
GM-CSF
ALVAC-p53 Phase I-II Potent T-cell and IgG antibody responses against the vector Van der Burg
Recombinant canarypox escalation RCT component of the ALVAC vaccine were induced in the majority (2002) (138)
virus & tumour of the patients.
associated auto-antigen 
p53
rF-CEA(6D)-TRICOM Phase I RCT Increase in the frequency of CEA-specific T-cells in 10 patients. Morse
fowlpox vector to Cytokine flow cytometry showed CEA-specific immune response (2005) (187)
infect dendritic cells & among both CD4+ and CD8+ T-cells in all immune responders. 
co-stimulatory molecule Safe and activates potent CEA-specific immune responses. Marshall
rv-CEA(6D)-TRICOM Phase I RCT CEA-specific T-cell responses were observed in the majority (2005) (158)
vaccinia vector to infect of patients tested.
dendritic cells &
co-stimulatory
5T4-TroVax Phase I/II 5T3-Specific antibody response generated in 94% of 22 vaccinated. Harrop et al.
Pox virus vector-MVA No correlation between enhanced survival and MVA specific (2006) (161)

esponses. 41% showed disease stabilisation.



expressing CD55. Case-control studies on patients with
minimal residual disease suggest there might be a slight
survival advantage (175). Several randomised control trials
(neo-adjuvant/adjuvant) failed to show improvement in
survival (176, 177) and no further research has been
conducted since. 

SCV106 is another anti-idiotype, this time goat antibody,
vaccine. It mimics the 17-1A glycoprotein antigen associated
with colorectal cancer. In a double blind randomised phase
II trial overall prolongation of survival was shown in
immunoresponders (178) compared to patient receiving
unspecific goat antibodies. Twenty-nine out of 42 patients
mounted an immune response. Comparison of
immunological responders in both groups revealed a
significant survival advantage of the SCV 106-treated
patients compared with controls (mean 67 versus 39 weeks;
p=0.01). No further studies were carried out. 

III. DC-based vaccines. DCs are derived from haemopoetic
cells and act as antigen-presenting cells for triggering T-cell
immunity in the context of both MHC I (CD8+ CTL) and II
(CD4+ T-cells) (179). Most DC vaccines are prepared by
pulsing DCs with either tumour lysate or RNA, by
transfection with tumour DNA or by creating tumour cell/DC
fusions (180). 

As with autologous tumour-cell derived vaccines,
autologous dendritic cells have also been used as platforms
for cancer vaccines and induce tumour-specific immune
responses as well as objective clinical responses in colorectal
cancer patients (181, 182). For example, tumour cell lysate
pulsed DCs induce an antitumour T-cell response both in
vitro and in vivo (183, 184). In another phase II study,
autologous DCs were pulsed with allogeneic tumour cell
lysate containing cancer testis antigens and administered to
twenty advanced colorectal cancer patients showing median
survival of 5.3 months with stable disease in 24% patients in
an otherwise safe and non toxic vaccine (185). 

Viral vectors have also been used to load DCs with tumour
antigens or transduce them with tumour-specific genes often
in association with co-stimulatory molecules to enhance the
response. In colorectal cancer, CEA is the most widely used
antigen for loading DCs (186). For example active immune
response was generated after DCs were transfected with a
fowlpox virus encoding CEA and administered to metastatic
colorectal cancer patients (187). CEA-specific immune
responses have also been elicited through similar vaccines,
using DCs loaded with CEA peptides (188-190). Immuni-
sation with DC cells pulsed with HLA-restricted CEA
peptides resulted in increase in CEA specific T-cells in 7 out
of 10 patients. Monocyte-derived DCs can also be transfected
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Table III. Anti-idiotype vaccines.

Vaccine type Trial Results Reference

CeaVac Phase II RCT Vaccine as adjuvant to chemotherapy and vaccine alone. CeaVac Foon
Anti-idiotype  consistently generated a potent anti-CEA humoural and cellular (1999) (166)
monoclonal antibody immune response in all patients entered into this trial. 5-FU 

regimens: no effect on immune response.
CeaVac & Polyab Phase II prospective CeaVac and human milk fat globule (TriAb). Posner
Anti-idiotype Adjuvant to Vaccine therapy of colorectal cancer hepatic metastases did not (2008) (168)
monoclonal antibody resection improve 2-year RF survival (39%) when compared with the 

expected value of 40% reported for hepatic resection alone.
105AD7 (OnyVac) Phase II RCT Immune responses to vaccination were induced in a majority of Ullenhag
Anti-idiotype Neo-adjuvant/adjuvant monitored patients. RF survival, OS: NR. (2006) (177)

105AD7(Onyvax) Phase II RCT 105AD7 Vaccination does not prolong survival in patients with Maxwell-
Anti-idiotype advanced colorectal cancer. Armstrong
Monoclonal antibody (1999) (174)
SVC106 Phase II RCT Vaccination of immunologically responding metastatic colorectal Samonigg
Anti-idiotype carcinoma patients with SCV 106 leads to slowed disease progression (1999) (178)

and tumour dissemination and significantly prolongs survival time.
5T3 TroVax Phase I/II 5T4-Specific immune responses in 94% of the 22 participants. Harrop
Anti-idiotype No correlation between enhanced patient survival and MVA-specific (2006) (161, 164)
MVA immune responses. Overall, 41% patients showed disease stabilisation.
5t3 TroVax Phase II 88% showed positive response for the 5T4 antigen and 95% for the Harrop 

Adjuvant to chemotherapy vector system (MVA). Significant associations between immune (2007) (209)
responses and OS across trials. RR 14% (p<0.01) and 13%
(p=0.01). In addition, combination of two treatment modalities did
not enhance toxicity and was in fact shown to induce potent 5T4
immune responses.



with RNA encoding tumour antigens, for example CEA RNA
to induce T-cell reactivity (191). Such antigen-specific T-cell
responses can readily be detected in delayed type
hypersensitivity (DTH) skin tests and correlate with outcome
(192). However, it is only mature DCs that can stimulate T-
cell responses (193-195). This can explain why other studies
with CEA-peptide pulsed DCs did not find CEA-specific
immune responses. Validated assays are also needed to
monitor immunological outcome, since clinical responses
occur in a minority of patients. These assays should ideally
run on tumour tissue and lymph nodes rather than peripheral
blood, where precursor frequencies might be low. 

DC vaccines have also been used for the investigation of
responses to multiple TAAs by loading autologous DCs with
peptides derived from multiple TAAs to determine priming of
antigen specific CD8 T-cells and whether responses to all of
the antigens included in the vaccine can be raised. The
vaccine was manufactured using GM-CSF and IL13 to
generate dendritic cells (DCs) from monocytes. The DCs
were loaded with 6HLA-A*0201-binding peptides derived,
among others, from CEA, MAGE-2 (melanoma antigen
overexpressed in gastrointestinal cancer (196), and HER-
2/neu. In a phase I/II trial, inoculation with this vaccine in
patients with advanced colorectal cancer resulted in induction
of T-cell responses not only to CEA-derived peptides but also
to multiple tumour-associated antigens (197). Sixty-five
(47.4%) out of 137 patients were determined by
immunohistochemistry to overexpress HER-2/neu protein.
Her-2/neu gene amplification was detected in two patients by
fluorescent in situ hybridisation (FISH) (198). 

The Nargosten and Thiel meta-analysis of 527 patients
with advanced colorectal cancer in 32 studies estimated the
clinical and immunological responses to ASI vaccines (199).
One complete response and four partial responses were
observed. For DC-based vaccines alone the clinical benefit
rate (the sum of complete responses, partial responses, mixed
responses and stable disease rates) was 17% compared to
11.2% for all patients. 

One of the main disadvantages of using DC vaccines is
limitations in their availability and costly as well as laborious
generation. DCs represent about 0.2% of peripheral blood
leukocytes but can readily be generated from precursors in an
immature form. They can then be maturated through the use
of GM-CSF and IL-4 as well as other cytokines (200-203).
Additionally they can be derived from CD34+ precursors in
the blood or through leukapharesis, though in small numbers
or in vivo through administration of DC growth factors.
However, it has been demonstrated than in vivo expansion of
the blood DC pool in cancer patients is feasible (204).

More research is needed into the immunisation route and
influences on T-cell migration to facilitate transfer of
activated cytotoxic T-cells to tumour sites as objective
clinical responses remain low (205). 

IV. Combination Vaccines. As already mentioned,
chemotherapy forms the standard treatment for the majority
of colorectal cancers. In advanced colorectal cancer,
chemotherapeutic combination therapy appears to provide
better results in terms of response rate and survival (206,
207).The combination of chemotherapy with vaccination has
formed a relatively new field of research with promising
results. 5-FU, folinic acid and oxaplatin have all been used in
combination with vaccines in an effort to create an active
antitumour ‘immunochemotherapy’ (208). 

The realisation that colorectal cancer is immunogenic led
to the exploration of immune therapy. Select chemotherapy
drugs have off-target immune effects, such as increased
expression of CEA with 5-FU administration, which can be
used in combination with novel tools to stimulate both
adaptive and innate immune mechanisms. Combination
treatment is capable of inducing both growth inhibition and
CEA up-regulation, making tumour cells more amenable to
the cytolytic activity of the specific effector lymphocytes.
Vaccine use in these settings aims at eradication of target
malignant T-cells after or during chemotherapy. Prete et al.
measured the combined effects of various chemotherapeutic
agents in CEA expression in colorectal cancer patients (208).
CEA protein expression was markedly up-regulated when
fluoropyrimidine was administered prior to oxalipatin. This
finding can be exploited with concomitant use of CEA
directed vaccines as tumour cells are likely to be rendered
more susceptible to the cytolytic activity of specific effector
lymphocytes following vaccination. 

In another recent cross-trial analysis of one phase I/II and
three phase II trials in patients with metastatic colorectal cancer,
where a median of five TroVax injections were administered
either alone, as adjuvant to surgery or in combination with
chemotherapy (FOLFOX and FOLFIRI) (209, 210). Fifty-nine
patients were immunologically evaluated. Of theses 88%
showed positive response for the 5T4 antigen and 95% for the
vector system (MVA). Exploratory analyses showed significant
associations between immune responses and overall survival
across trials. In fact, doubling in the 5T4 specific antibody
response after the second and third vaccination was
independently associated with a reduction in relative risk of
death of 14% (p<0.01) and 13% (p=0.01). In addition
combination of two treatment modalities did not enhance
toxicity and was in fact chemotherapy in synergy with the
vaccine was shown to induce potent 5T4 immune responses.

One of few meta-analyses of active specific immunisation
in colorectal cancer by Nagorsen and Thiel (2006) showed
an overall response rate of 0.9%, including autologous
tumour cells, peptide vaccine, dendritic cells, idiotypic
antibody, and virus-based vaccine, with immune responses
elicited in at least 44% of patients (199). Disease
stabilisation was observed in 8.3% cases with a very poor
response rate (<1%) in patients with advanced disease. 
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Expert Opinion

Cancer vaccines have been under research for over two
decades with efforts to develop biologically active immuno-
therapies against tumour cells without detrimental toxicities. 

Tumour vaccine efficacy depends on host-vaccine
interactions, especially in terms of immunogenicity of the
cancer, the status of the host immune response (to
recognition and effector mechanisms) and development of
host T-cell-mediated immunity and memory. Therefore, the
potency of colon cancer vaccines depends on its ability to
induce host antitumour response and systemic cell mediated
immunity. It is not only successful induction of host
antitumour response that is necessary but manipulation of the
immune system beyond the initial stimulation too. 

Memory CD8+ T-cells generated without CD4+ T-cell help
are defective in their ability to respond to secondary
encounters with antigen. Naive CD4+ T-cells upon in vivo
priming differentiate into either Th1 or Th2 effector cells.
IL12 and IFN-gamma can drive the differentiation towards
Th1. Long-term memory T-cells maintain the phenotype
induced at the time of priming. Long-term memory appears
to be linked with survival in cancer. Therefore, a ‘prime-
boost’ vaccination with a DC-based vaccine for priming and
a tumour cell based vaccine for boosting may be superior, as
it will target both naive and memory T-cells and may
optimise an overlap with MHC.

As described earlier, the majority of tumour infiltrating
lymphocytes that recognise overexpressed tumour/self
tumour antigens or TAAs are actually T-cells that escaped
negative thymic selection and hence their activation is
suboptimal (211). Most vaccines already described aim at
enhancing the function of these T-cells. Another approach
would be the use of peptide variants. Also known as
mimotopes, heteroclitic peptides, altered peptide ligands and
superagonists, they can activate the low-affinity TAA-specific
T-cells better than native antigens (212) eliciting stronger
activation against native antigens (213, 214. Even though
preliminary trials did not show promise (94, 215), more
recently Jordan et al. showed that peptide-variant vaccines
are most effective when the peptides react with a large
responsive part of the tumour-specific T-cell repertoire (216).
Evidently more research into this area is warranted. 

Mechanisms of measuring antitumour immunity are also
essential for monitoring vaccine efficacy. Early studies
suggest that DTH reactions after autologous tumour cell
vaccination correlates strongly with recurrence and cancer
survival (217). There is need to develop further methods to
test antitumour immunity after vaccination. 

Coming on to the selection of potential vaccination targets
and tumour-associated antigens, research into identification
of new TAAs and their exploration is still on going. For
example, human colorectal cancer antigen GA733 is a

transmembrane glycoprotein and functions as a cell-cell
adhesion molecule (also known as CO17-1A/KS1-
4/KSA/EpCAM (218). Its extracellular domain has been
used as a target in colorectal cancer vaccination trials, where
recombinant protein, produced tumour specific humoural and
cellular immune responses (219). In fact these responses
were higher than similar responses elicited by monoclonal
antibodies (220) and are even further enhanced by expression
of the antigen in a viral vector, such as vaccinia (221).
Recombinant chimeric protein was formed using GA733-2
fused to the Fc fragment of the antibody GA733-2-Fc and
expressed from Drosophila S2 cells and was then used to
vaccinate mice, eliciting specific antibody production, which
bound to human colorectal carcinoma HCT-116 cells (222).
The latter study was the first to report in vivo
immunogenicity of the chimeric protein GA733-2-Fc, which
may form a platform for further research and vaccine
development. 

There is no convincing reason to focus on any one
particular antigen group more than another and, in fact, there
seem to be diminishing returns from discovering more tumour
antigens and it might be time to focus on discovering more
platforms for tumour antigen delivery. Viruses as a vehicle of
delivery of TAAs are usually attenuated and then genetically
engineered to express human TAAs. The first recombinant
vaccinia virus was constructed years ago and subsequently
various vaccinia and other poxviruses followed. It soon
became evident that molecular modification techniques also
had a major role to play for successful delivery of antigens
as well as optimising the tumour environment. Viruses were
used to infect the tumour cells and then deliver genes for
cytokines which would in turn recruit and activate antigen
presenting cells at the site of vaccine injection, such as in the
ALVAC-CEA/B7 trials. It becomes evident that it is
impossible to talk about TAAs without mentioning delivery
systems and optimisation techniques. 

In addition to TAAs, we should not forget the role of growth
and survival factors in the growth and spread of colon cancer
which may also serve as targets for immune attack as well as
timing of vaccine administration. In an ideal setting the vaccine
should be administered immediately after surgery to increase
the chances of eradicating micrometastases. A more recent
study showed that irradiated tumour cell vaccine efficacy,
measured as an increase in CD8+ T-cell-mediated immunity,
was increased by concomitant injection with anti-TGF beta
antibodies. TGF beta inhibition has been shown to enhance
antitumour immunity mediated by CD8+ T-cells, acting
synergistically with irradiated tumour cells (223). Approaches
targeting growth factors and cytokines in combination with
other modalities have not been widely explored. 

Several trials demonstrated statistically significant results
in phase I/II trials but subsequently failed at generating
significant results in phase II or III trials, perhaps secondary
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to tumour load. Such failure should lead to critical evaluation
of basic concepts and of influences on scientific
developments and would justify testing in earlier stage
disease. Most phase I trials show safety but only a small
minority of patients show objective immune response.
Therefore, immunological performance status needs to be
optimal and taken into account. In several trials, such as in
the avicine trials, although no survival benefit was identified,
subgroup analysis showed groups that actually benefitted.
The need for better patient subsets may be addressed by the
use of specific biomarkers for the identification of patients
more likely to benefit from such immunotherapy.

In addition, it seems that the majority of cancer vaccine
research focuses on patients with advanced disease. Such
patients are less likely to respond as their immune systems
might be compromised by the stage of disease. In contrast,
promising results have been shown in testing in earlier stage
disease where the immune system is likely to be more adept
at identifying and destroying tumour cells. Other studies,
such as the CeaVac have shown that patients who have
undergone resection followed by either vaccination or no
adjuvant treatment had a better PFS. Removal of the tumour
might permit greater activity of the tumour vaccine against
micrometastases. The majority of colon cancer vaccines are
administered quite late in the disease process, sometimes
even after metastatic spread, for end stage disease or after
failure of other modalities. Early vaccine administration
might therefore be beneficial. 

Again it seems that the adjuvant setting is the most
productive. However, true adjuvant cases where advanced
cancer is locally resected are less common and hence large
number of cases would be needed to yield significant results.
However, vaccination of patients with controlled metastatic
disease might be more fruitful. In a recent Cochrane review
(2009) on adjuvant therapy for resected stage II colon cancer,
seven adjuvant specific immunotherapy trials were identified,
of which only one showed an improvement for treated
patients, with 61% (18-81) risk reduction for recurrences
(224) (see table I). The different results were attributed to
immunogenicity, status of the immune system and
development of cell mediated immunity. Significant
improvement in DFS (OR: 0.75, CI: 0.56-1.00) was
demonstrated in the meta-analysis of 723 patients across the
four trials using autologous tumour cells and BCG,
associated with an induration of more than 5 mm at the
inoculation site. The results of this meta-analysis indicate
that active specific immunotherapy is an important adjuvant
modality for stage II patients. Therefore, adjustments in
terms of patient selection, disease stages and end-points as
well as combination therapies are also necessary. 

There have been relatively few clinical studies to
investigate the concomitant use of cancer vaccines and
chemotherapy. Chemotherapy regimens have been associated

immunostimulatory effects such as enhanced cross
presentation of antigens, partial activation of dendritic cells
promotion of long-term antigen independent memory.
Therefore, combining different treatment modalities may in
face provide survival benefit. Main problems include the
optimum timing of delivering the vaccine relative to
chemotherapy and the best chemotherapy regimen.
Chemotherapy aims at reducing tumour load and intuitively
this would provide an ideal setting for cancer vaccination in
patients with minimal residual disease. The effect of
cytotoxic chemotherapy on vaccine-induced antitumor
immunity remains largely unknown.

There is also little research into the use of vaccines after
tumour resection, as a tertiary prevention method, especially
in patients undergoing liver resection for colorectal metastases.
In phase II trials with TroVax, patients with pre-existing
proliferative responses to 5T4 were the longer term survivors.
Hence pre-existing 5T4 specific immune responses provide the
platform for stronger 5T4 specific immune responses after
TroVax (225). Even with TroVax though, additional evaluation
of cellular immune responses to 5T4 in cryopreserved
peripheral blood mononuclear cells from colorectal cancer
liver metastasis vaccinated patients demonstrated that despite
cumulative proliferative response to 5T4 immunity, more than
50% patients showed immune suppression and escape.
Therefore, serological and cellular immunity are likely to
manifest through direct and indirect mechanisms. Poorer
survival was correlated when elevated Treg levels as a
proportion of CD4+ infiltrate. Manipulation of local CD4+

infiltration might influence clinical outcome (226). 
Combination treatments can be considered with treatment

modalities other than chemotherapy, for example radio-
therapy. Radiotherapy may reduce immunosuppressive factors
produced at the tumour site. Hence combination strategies
with vaccination may provide a solution to the ability of
tumours to shield themselves from an immune attack. 

The success of clinical trials of colon cancer
immunotherapy may depend on other factors as well. A
consensus must be reached on the most important endpoints
and focus research into achievement of these. For example,
it is notable that for the prostate cancer vaccine Provenge,
survival was improved while PFS was not. This suggests
that survival may need to be the endpoint used for some
vaccines and in some clinical scenarios. Of course, this
would greatly increase time to see favourable results. Also,
intermediate endpoints or biomarkers of response should
also be clarified. 

Therefore, reliable clinical results are more likely to be
obtained using patients with small tumour burden and early
or minimal residual disease after chemotherapy or resection
as well as assays to monitor the state of immunisation. Even
though to date there is no substantial evidence that cancer
vaccines are curative or result in significant improvement of
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life expectancy, it is vital for research to continue, perhaps
shifting into testing new delivery platforms in patients with
earlier stage disease or at least in combination regimens to
begin with before proceeding to identify a preventative rather
than a curative vaccine which would bring a new era in
colorectal cancer therapy. 
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