
Abstract. Background: Ionizing irradiation-induced cellular and
tissue damage is mediated in part by resultant radiochemical
reactions and resultant oxidative stress. Irradiation-induced
reactive oxygen and nitrogen species include: superoxide, nitric
oxide, hydroxyl radical and hydrogen peroxide. The biochemical
combination of superoxide and nitric oxide radicals forms
peroxynitrite, a potent oxidant known to induce lipid peroxidation.
Materials and Methods: The antioxidant capacity and lipid
peroxidation of the esophagus were determined following
irradiation. Results: In the present studies, measurements of total
antioxidant capacity did not change in the esophagus of control
irradiated or control plasmid pNGVL3-PL intraesophageally-
injected mice. In contrast, manganese superoxide dismutase-
plasmid/liposome (MnSOD-PL) intraesophageally-treated mice
showed a significant increase in antioxidant capacity persisting for
seven days. Lipid peroxidative changes induced in the control
irradiated mouse esophagus decreased over seven days after
irradiation of C3H/HeNHsd mice exposed to 37 Gy in a single
fraction. MnSOD-PL radioprotective gene therapy administered
intraorally 24 hours prior to irradiation did not significantly reduce
the kinetics of induction of total peroxidated lipids over the first
seven days after irradiation but did decrease lipid peroxidation at
days 14 and 21. Conclusion: These studies demonstrate the
antioxidant function of MnSOD-PL gene therapy to the
esophagus, which is detectable as a reduction in irradiation-
induced lipid peroxidation.

Cellular and tissue damage induced by ionizing irradiation

has been shown to involve biochemical steps at the

molecular, intracellular and intercellular levels which are

common to a range of other inflammatory stimuli including:

hypoxia, ischemia reperfusion injury and toxic chemical

damage (1-9). In particular, ionizing irradiation-induced

free radicals and oxidants (including superoxide, nitric oxide

(10), hydroxyl radical, hydrogen peroxide and peroxynitrite)

mediate cellular damage (11, 12) via the process of lipid

peroxidation (13). Oxidative lipid damage to the nuclear

membrane, but also the mitochondrial and cell membrane

(14), have been shown to include peroxidative changes.

Specific lipid peroxide moieties, formed in ionizing

irradiated cells in vitro and in tissues in vivo, have been

shown to be common in molecular structure and

distribution to lipid peroxidative changes that are induced

by inflammatory cytokines (15-21), ischemia reperfusion

injury (2) and by toxic chemicals, and which are associated

with the induction of apoptosis through mitochondrial

cytochrome C release (15-17) and activation of caspase

pathways leading to nuclear DNA fragmentation (11, 12).

Ionizing irradiation-induced tissue damage is known to be

directly related to total irradiation dose, irradiation fraction

size and volume of tissue irradiated (22). Depletion of

antioxidant reserves within cells and tissues increases ionizing

irradiation injury while restoration of antioxidant levels,

including thiols and glutathione, decrease irradiation-induced

cell and tissue death (23, 24). Direct irradiation dose-response

relationships to redox imbalance within cells and tissues have

been shown to correlate to lipid peroxidative changes (13-15).

We have previously demonstrated that delivery of

intraoral (swallowed) MnSOD-PL gene therapy to mice

provides significant protection against single fraction (25)

or fractionated ionizing irradiation damage to the

esophagus (26, 27). With cells in culture, MnSOD-

transgene-mediated ionizing irradiation protection has been

shown to decrease the formation of specific lipid

peroxidative changes in the mitochondrial membrane (14,

15, 24). In the present studies, we sought to determine

whether irradiation protection of the murine esophagus by

MnSOD-PL gene therapy correlated with in vivo detectable

decreases in tissue lipid peroxidation.
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Materials and Methods

Mice, plasmid/liposome and irradiation. Plasmid/liposome complexes

were prepared by mixing 11 Ìl of lipofectant (Gibco BRL,

Gaithersburg, MD, USA) with 200 Ìg of plasmid DNA in a final

volume of 100 Ìl of PBS, incubated at room temperature for 30

min. Male C3H/H3NHsd mice (Harlan Sprague Dawley,

Indianapolis, Ind., USA), 10-12 weeks of age, were treated by

placing a feeding tube attached to a 1 cm syringe through the oral

cavity and injecting 100 Ìl of water followed by 100 Ìl of

plasmid/liposome complex into the top of the esophagus. The

material was swallowed (25). Groups of mice were injected 24 h

preirradiation with liposome complexes containing: i) no plasmid

DNA, ii) control pNGVL3 plasmid DNA, or iii) pNGVL3-MnSOD

plasmid DNA containing the human MnSOD transgene (27). The

mice were then irradiated to 37 Gy (Varian 6 MeV linear

accelerator, 200 cGy/min dose-rate). The mice were shielded, as

published (25, 55, 56), so that only the pulmonary cavity was

irradiated. The abdomen, head and extremities remained outside

the field of irradiation.

Biodistribution of intraesophageally-administered MnSOD-PL
transcripts. C3H/HeNHsd mice (5 males and 5 females per group)

received intraesophageal administration of water, pNGVL3-PL or

MnSOD-PL, and were sacrificed 24 h later. Parts of the following

tissue were removed: ovaries, skin, muscle, bone marrow, blood,

heart, brain, liver, kidney, urine, bladder, rectum, feces, intestines,

stomach, lungs, trachea, esophagus and tongue, and frozen in liquid

nitrogen. DNA was extracted using a DNeasy 96 Tissue Kit by

Qiagen (Valencia, CA, USA). Polymerase chain reaction (PCR)

was performed using primers specific for the human MnSOD

transgene and primers for mouse actin to demonstrate that the

PCR reaction occurred properly. Electrophoresis of the PCR

products was carried out in 1% agarose gel and stained with

ethidium bromide.

Measurement of cytokine transcript levels in the esophagus by RNase
protection assay. C3H/HeNsd mice were injected intratracheally

with clinical-grade MnSOD-PL, pNGVL3-PL or liposomes

containing no DNA. The mice were irradiated to the pulmonary

cavity with a dose of 37 Gy. The mice were killed humanely 0, 1, 4

or 7 days later; the esophagus was removed and snap-frozen in

liquid nitrogen, and RNA was extracted using Triazol. Cytokine

expression was analyzed using RiboQuant RNase Protection Kit

Multi-Probe Template Sets (mCK-2b and mCK-3b) (Pharmingen,

San Diego, CA, USA). Densitometry was determined using a

Molecular Dynamics Personal Densitometer SI (Molecular

Dynamics, Sunnyvale, CA, USA). The results were normalized

against the internal standards L32 and glyceraldehydes-3-

phosphate dehydrogenase (GAPD) provided with the assays.

Cytokine mRNA levels measured included TGF-‚1, TGF-‚3, TNF-·,

TNF-‚, Ltb, IFNg, INFb, Mif, IL-1a, IL-1B, IL-1ra, IL6, IFNg,

IL10, IL12 and interferon gamma inducing factor (IGIF, now

known as Ifngr) (27).

Measurement of antioxidant capacity of the esophagus following
irradiation. Male C3H/HeNHsd mice were treated with water

alone, pNGVL3-PL or MnSOD-PL, as described above, followed

by irradiation to 37 Gy to the esophagus 24 h later. The mice were

sacrificed at 0, 1, 2, or 7 days after irradiation. The esophagus was

removed, frozen in liquid nitrogen, homogenized and the

antioxidant capacity was measured using an antioxidant reductive

capacity assay (Northwest Life Science Specialties, LLC,

Vancouver, WA, USA). Following homogenization, the protein

was quantitated and 100 Ìg of protein was diluted into the assay

dilution buffer for a final volume of 800 Ìl. Two hundred Ìl of the

diluted samples were placed in each of 3 wells, and the plate was

read at 490 nm. To each well was added 50 Ìl of Cu+/+ solution

and incubated for 3 min at room temperature and stopped by the

addition of 50 Ìl of the stop solution, and the plate was then read

a second time at 490 nm. By plotting the difference between the

two absorbance readings and comparing them to a standard curve,

we quantitated the antioxidant capacity of the solutions.

Measurements of lipid peroxidation. Two methods were used to

analyze lipid peroxidation following irradiation. In the first assay,

control mice as well as mice that had been administered MnSOD-

PL 24 h earlier were sacrificed and the esophagus was removed,

prepared as a single cell suspension by teasing the tissue in a

solution containing 0.2% type XY collagenase, dispase (grade 2,

240 units) and 0.1% trypsin, and incubated for 1 h at 37ÆC. The

cell suspensions and DMEM were drawn through proportionately

smaller gauge needles to a 27-gauge needle and were then filtered

through 100 ÌM and 45 ÌM filters to remove cell clumps. The cells

were stained with anti-CD45-FITC and anti-Ter119-PC7 and

sorted by flow cytometer (55, 56) to remove the hematopoietic cells

from the esophageal cells. The cells were then irradiated to 10 Gy

and plated in T25 flask in DMEM media containing 10% FCS.

Twenty-four h later, the cells were removed from the flask, pelleted

and frozen at –80ÆC. The cells were thawed and the lipid

peroxidation measured using a Malondialdehyde assay (Northwest

Life Science Specialties). The cells were resuspended in 250 Ìl of

the calibrator buffer to which was added 10 Ìl of BHT reagent, 

250 Ìl of the acid reagent and 250 Ìl of TBA reagent. This was

vortexed and then incubated for 60 min at 60ÆC and centrifuged at

10,000 X g for 3 min. The supernatant was then placed in a cuvet

which was read at 520 nm.

As a second method, measurement of in vivo lipid

hydroperoxide (57) was carried out. C3H/HeNHsd male mice were

injected intraesophageally with pNGVL3-PL or MnSOD-PL and

irradiated 24 h later to 37 Gy to the pulmonary cavity. The mice

were sacrificed at days 0, 1, 2, 3, 7, 14 or 21 after irradiation (3

mice per group). The esophagus was removed and frozen in liquid

nitrogen with the lipids extracted and the amount of lipid

phosphorous determined using a micro-method. Total lipid extracts

were obtained by the Folch procedure. The esophagus was

homogenized in methanol and mixed with 1 ml of chloroform and

kept under nitrogen for 1 h on ice (in the dark) then 0.3 ml of 0.1

M sodium chloride was added and the mixture was vigorously

vortexed under nitrogen. The chloroform layer was separated by

centrifugation and chloroform was dried under the steam of

nitrogen. Lipids were dissolved at 100 Ìl of hexane-isopropanol-

water (3-4-0.5 v/v mixture).

Lipid hydroperoxides were determined by fluorescence HPLC of

products formed in the peroxidase-catalyzed reaction of specific lipid

hydroperoxides with a fluorogenic substrate, Amplex Red. HPLC

separation of the reaction mixture with fluorescent detection of

resorufin (an Amplex Red oxidation product) is conducted as

follows. The assay is started by the addition of 1 ÌL of reaction

mixture containing 50 ÌM Amplex Red to 100 ÌL of basic reaction
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mixture containing 25 mM NaH2PO4, 0.5 mM EDTA (pH 7.4 at

4ÆC) and an aliquot (1-2 ÌL) of lipid samples dissolved in ethanol.

The reaction was initiated by addition of 1 ÌL of microperoxidase

solution (0.25 Ìg/ÌL). The samples were incubated at 4ÆC for 

40 min. The reaction was terminated by addition of 100 ÌL of stop

solution (10 mM HCl, 4 mM butylated hydroxytoluene in ethanol).

The samples were centrifuged at 15,000 xg for 5 min and the

supernatant was used for HPLC analysis. Aliquots (5 ÌL) were

injected into a C-18 reverse phase column (Eclipse XDB-C18, 5 ÌM,

150 X 4.6 mm). The column was eluted by mobile phase composed

of 25 mM NaH2PO4 (pH 7.0)/methanol (60:40 v/v) at 1 mL/min of

flow rate. The resorufin fluorescence was measured at 590 nm after

excitation at 560 nm. The Shimadzu LC-100AT vp HPLC system

equipped with a fluorescence detector (model RF-10Axl) and

autosampler (model SIL-10AD vp) was used. Chromatograms were

processed and stored in digital form with Class-VP software.

Statistics. The data are presented as mean±SEM and significance

of differences were assessed by Student’s t-test. Differences were

considered significant at p<0.05.

Animal assurance and welfare. All animal protocols used in these

studies were approved by the Institutional Animal Care and Use

Committee (IACUC) of the University of Pittsburgh, USA. All

procedures were performed under the supervision of the Division

of Laboratory Animal Research of the University of Pittsburgh.

Veterinary care was provided by the Division of Laboratory Animal

Research of the University of Pittsburgh. The mice were not

subjected to any discomfort, distress, pain, or injury other than

what has been described.

Results

Biodistribution of MnSOD-PL. To determine which tissues

were detectably transfected following intraesophageal

administration of MnSOD-PL, C3H/HeNHsd mice (male and

female) received intraesophageal water only, pNGVL3-PL or

MnSOD-PL, and were sacrificed 24 h following injection.

The various tissues of the mice were excised and frozen in

liquid nitrogen. The DNA was extracted and PCR

performed using primers specific for the human MnSOD

transgene as well as primers for actin to indicate that the

PCR reaction occurred. The PCR products were run on a

1% agarose gel and stained with ethidium bromide. Figure

1 demonstrates the results obtained from a representative

mouse injected with MnSOD-PL where the plasmid was

located only in the esophagus. In some of the mice injected

with MnSOD-PL, plasmid containing the human MnSOD

transgene was detected in the lungs, trachea and tongue or

oral cavity as well as the esophagus. No human MnSOD

transgene was detected in any of the tissues from mice

injected with water only or pNGVL3-PL. Uptake of the

MnSOD-PL was similar in both male and female mice.

Administration of MnSOD-PL reduces levels of irradiation-
induced inflammatory cytokine transcripts in the esophagus.
C3H/HeNHsd mice which had received intraesophageal

injection of liposomes only or MnSOD-PL, were irradiated

to 37 Gy 24 h later and were then sacrificed on days 0, 1, 4

or 7 after irradiation. The esophagus was removed, frozen in

liquid nitrogen and RNA extracted using Triazol. The RNase

Protection Assay was used to measure cytokine expression for

IL1‚, IL1· receptor, IFNÁ, IFNÁ receptor, IL6, LT·, LT‚,

TNF·, TGF‚ and MIF in the different groups. Following

irradiation, there was increased expression of several

cytokines by day 7 including IL1‚, IL1· receptor, IFNÁ, IFNÁ

receptor, IL6, TNF· and TGF‚. The expressions of IFNÁ and

TNF· were increased in irradiated mice and those injected

with liposomes alone then irradiated, but not in mice injected

with MnSOD-PL prior to irradiation (Figure 2).

Antioxidant capacity of the murine irradiated esophagus is
increased in mice treated with MnSOD-PL. Tissues with

higher antioxidant capacity should have an increased ability
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Figure 1. Biodistribution of MnSOD transgene transcripts following intraesophageal injection of MnSOD-PL. Groups of at least 5 male and female
C3H/HeNHsd mice were injected intraesophageally with water, pNGVL3-PL or MnSOD-PL (200 Ìg plasmid DNA) and sacrificed 24 h later. Tissue
samples from the major organs were collected and frozen in liquid nitrogen. DNA was extracted, and PCR performed using primers specific for the
human MnSOD transgene or actin. The PCR products were electrophoresized and stained with ethidium bromide. Results from one representative mouse
injected with MnSOD-PL are shown: lane 1 contains DNA from the ovaries, 2 skin, 3 DNA ladders, 4 muscle, 5 bone marrow, 6 blood, 7 heart, 8 brain,
9 liver, 10 kidney, 11 urine, 12 bladder, 13 rectum, 14 feces, 15 intestine, 16 stomach, 17 lungs, 18 trachea, 19 esophagus and 20 tongue. The upper
band represents the actin product, the bottom band the human MnSOD product. Expression of the MnSOD transgene was identified in the esophagus
(lane 19) of mice receiving MnSOD-PL. In some mice, expression was also detected in the lung and oral cavity (tongue). No expression of the human
MnSOD transgene was detected in any of the tissues of mice receiving water or pNGVL3-PL.



to reduce reactive oxygen species and scavenge radicals

produced following irradiation and should show irradiation

protection. Mice received water only, pNGVL3-PL, or

MnSOD-PL and were irradiated to 37 Gy to the esophagus

24 h later. The esophagus was removed and the antioxidant

capacity determined. Following irradiation, there was no

change in the antioxidant capacity of the esophagus from

mice injected with water only, or pNGVL3-PL. The

antioxidant capacity of the esophagus from mice injected

with MnSOD-PL had a relatively decreased antioxidant

capacity at the time of irradiation (Figure 3); however,

following irradiation, the antioxidant capacity of the

esophagus in this group increased on day 1 and continued

to be significantly elevated through day 7.

MnSOD-PL treatment reduces irradiation-induced lipid
peroxidation of the esophagus. To determine whether

administration of MnSOD-PL reduced irradiation-induced

lipid peroxidation, we measured lipid peroxidation by two

methods. The first method was used to measure lipid

peroxidation following irradiation of explanted esophageal

cells in vitro. Irradiation of the control 32D cl 3 cell line (11)

was used to demonstrate the capacity of the

Malondialdehyde assay (Northwest Life Science Specialties)

to measure lipid peroxidation. Irradiation of 32D cl 3 cells

in vivo 19: 997-1004 (2005)
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Figure 2. MnSOD-PL treatment decreases esophageal gene expression of
the transcripts for IFNÁ and TNF· following 37 Gy irradiation of the
esophagus. Control C3H/HeNHsd mice or mice treated with MnSOD-PL
24 h earlier were irradiated to 37 Gy to the pulmonary cavity. The mice
were sacrificed on days 0, 1, 4, or 7 following irradiation. The esophagus
was removed, frozen in liquid nitrogen, RNA extracted and RNase
Protection Assay was performed to determine gene expression for IL1‚,
IL1· receptor, IFNÁ, IFNÁ receptor, IL6, LT·, LT‚, TNF·, TGF‚ and
MIF. Control irradiated mice showed significantly increased expression
(p<0.05) of IFNÁ at day 4 and 7 (Figure 2A) and TNF· at day 7 (Figure
2B) following irradiation, while MnSOD-PL-treated animals showed no
significant increase in expression levels of the transcripts for these
cytokines. (At least 3 mice per data-point.) There were no significant
irradiation-induced changes in gene expression for the other cytokines
(data not shown).

Figure 3. Increased relative antioxidant capacity of esophageal tissue
removed from MnSOD-PL-treated mice. Control irradiated C3H/HeNHsd
mice and mice injected intraesophageally with either MnSOD-PL or
pNGVL3-PL (200 Ìg plasmid DNA) were irradiated to 37 Gy 24 h later
to the upper body and sacrificed on days 0, 1, 2, or 7 following irradiation.
The esophagus was removed, frozen in OCT, homogenized and the total
antioxidant capacity measured using an Antioxidant Reductive Capacity
Assay (Northwest Life Science Specialties). Following irradiation there
was no significant change relative to day 0 in antioxidant capacity in the
control irradiated or pNGVL3-PL-treated mice. There was a significant
increase relative to day 0 in the antioxidant capacity of the mice treated
with MnSOD-PL on days 1, 2 or 7 following irradiation (p<0.0001, 3
mice per group).



to 10 Gy resulted in increased lipid peroxidation at 1 and 24

h after irradiation (Figure 4B). Esophageal cells were

isolated from explanted tissues from mice that had been

injected with water only, or MnSOD-PL and the cells were

then irradiated in vitro to 10 Gy. Lipid peroxidation was

measured at 1 h and 24 h after in vitro irradiation. There

was a clear increase in peroxidation of lipids detected 1 h

after irradiation in the control water-injected animals. In

contrast, the level of peroxidized lipids in the irradiated

esophagus was decreased prior to MnSOD-PL treatment

(Figure 4A).

As a second method to measure lipid peroxidation, we

carried out MnSOD-PL treatment and in vivo irradiation.

Groups of mice injected with pNGVL3-PL or MnSOD-PL

24 h earlier were tested for in vivo changes detected at 0, 1,

2, 3, 4, 7, 14 or 21 days after irradiation. The mice were the

sacrificed, the esophagus removed and lipid hydroperoxides

measured (Figure 5). At day 7 after irradiation, lipid

hydroperoxides were decreased in mice that received

pNGVL3-PL or MnSOD-PL. However, at day 14 and 21,

there was a secondary increase in lipid peroxidation in the

esophagus of mice treated with pNGVL3-PL, not observed

in the MnSOD-PL-treated mice (Figure 5).
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Figure 4. Esophageal MnSOD-PL administration in vivo decreases the level
of in vitro irradiation-induced lipid peroxidation. A Malondialdehyde Assay
was utilized to detect lipid peroxidation. Control C3H/HeNHsd mice and
mice injected intraesophageally with MnSOD-PL 24 h previously (SOD)
were sacrificed. The esophagus was removed from each mouse and single
cell suspensions prepared. The cells were stained with antibodies to CD45
and Ter 119 and sorted by flow cytometer (55, 56) for removal of
hematopoietic cells. The isolated esophageal cells from at least 2 mice per
group were irradiated to 10 Gy and lipid peroxidation measured at 1 h and
24 hrs. The irradiated esophageal cells from the control irradiated mice
demonstrated increased lipid peroxidation above baseline levels by 1 h
following irradiation. The increased level was not observed at 1 h after
irradiation in the MnSOD-PL-treated mice (Figure 4A). As the assay control,
cells from 32D cl 3 (39) were irradiated to 10 Gy and lipid peroxidation
measured at 1 h and 24 h. The 32D cl 3 cells showed significantly increased
lipid peroxidation at 24 h following irradiation (Figure 4B).

Figure 5. Esophageal MnSOD-PL administration decreases the level of
irradiation-induced lipid peroxidation in vivo. Groups of 21 C3H/HeNHsd
mice were injected intraesophageally with MnSOD-PL or control pNGVL3-
PL (200 Ìg plasmid DNA), were irradiated 24 h later to 37 Gy to the
esophagus, and sacrificed at 0, 1, 2, 3, 7, 14 or 21 days later. The esophagus
from 3 mice per group was removed at each time point and frozen in liquid
nitrogen, homogenized, and lipid hydroperoxides measured. At days 14 and
21 there was a significant reduction of lipid hydroperoxides relative to prior
levels in the mice treated with MnSOD-PL (p=0.0363 or 0.0293,
respectively), but not in the pNGVL3-PL treated mice.



Discussion

Ionizing irradiation-mediated cellular and tissue damage in

the esophagus is known to include biochemical pathways

common to multiple other forms of tissue injury including

hypoxia (6), ultraviolet irradiation (1), inflammatory

cytokines (2, 3), and inflammatory cellular-mediated tissue

damage (8, 9). The common element of lipid peroxidation in

these several forms of tissue damage is consistent with the

capacity of each of these damage-inducing agents to induce

oxidative stress which is mediated by free radical production

(24). Depletion of cellular and tissue antioxidant stores,

notably depletion of thiols and glutathione, is known to

increase the baseline levels of lipid peroxidation (39). Lipid

peroxidative changes are known to mediate membrane

permeability changes associated with mitochondrial

membrane permeability and leakage of cytochrome C (11,

12). Cytochrome C is a common mediator of caspase

activation and nuclear DNA fragmentation associated with

apoptosis (17). Thus, lipid peroxidative changes in the

mitochondrial membrane have been shown to be related to

the pathway of apoptotic cell death.

The present studies demonstrated that ionizing irradiation

induces lipid peroxidation in a murine esophagus and that this

level is decreased by treatment with MnSOD-PL. We

demonstrated increased expression of IFNg at 4 and 7 days

after irradiation and increased TNF-· at day 7 in the mouse

esophagus following 37 Gy in mice treated with control

plasmid pNGVL3-PL. This induction was not seen in MnSOD-

PL-treated mice (27). The lipid peroxidation at day 7 may be

attributable to synthesis of new lipids during cell division

required to replace damaged cells. By day 14, in the control

irradiated or the pNGVL3-PL-treated mice, the increase in

cytokines may have been responsible for the cell division and a

delayed second wave of oxidant-mediated increase in lipid

peroxidation. Thus, our method of MnSOD-PL treatment

decreased both cytokine expression and lipid peroxidation. 

The lipid peroxidation we observed in vivo was probably

not directly induced by irradiation. Instead, lipid peroxidation

was most likely caused by an inflammatory response triggered

by irradiation. Therefore, lipid peroxidation and increased

pro-inflammatory cytokines were likely to correlate (which

seemed to be true in the present data). Our methods used in

Figure 5 were particularly good for in vivo assays of lipid

peroxidation. In contrast, the MDA measurements (Figure 4)

for in vitro irradiation were not applicable in vivo. Thus, we

needed two methods for the in vitro and in vivo assays of

esophageal lipid peroxidation. Both methods proved valuable

and the results correlated to some extent. Lipid peroxidation

is known to occur after some significant depletion of

antioxidant reserves. This time lag in part explains the

observed time course of changes in antioxidant reserves

relative to the increases in lipid peroxidation.

The most likely mechanism of MnSOD-PL-mediated

reduction of irradiation-induced lipid peroxidative damage

in the esophagus was through stabilization of antioxidant

pools and neutralization of superoxide by MnSOD enzyme

action. In support of this hypothesis is other data showing

that adding small molecule antioxidant radioprotectors to

cells in culture also reduced the radiation-induced lipid

peroxidation (41, 42, 53). Another possibility is that the lipid

in the liposomes themselves could have stabilized the cell

membrane, or mitochondrial membrane lipids at molecular

target sites of lipid peroxidation. Against this latter

possibility is the data showing that control groups receiving

empty liposomes had less significant radioprotection. The

data suggest that the MnSOD transgene product in large

part mediated protection. The data also suggest that,

following irradiation, increased expression of MnSOD

results in a significantly increase antioxidant capacity that

may be responsible for the reduction of lipid peroxidation

detected in these studies.

Previous studies have shown that use of Copper/Zinc

SOD plasmid liposomes (an enzyme targeted to the

cytoplasm) failed to produce significant radioprotection of

the esophagus (12, 26). In these prior studies, targeting of

the CU/ZnSOD to the mitochondrial membrane by

attachment of the mitochondrial localization leader

sequence of MnSOD to the transgene for CU/ZnSOD

restored radioprotection to levels observed with MnSOD

(12). Deleting the mitochondrial targeting sequence from

the MnSOD transgene removed its radioprotective capacity.

Previous studies established that ionizing irradiation

damage protection by MnSOD-PL gene therapy is mediated

at the level of the mitochondrial membrane, since targeting

of enzyme action to that site was protective (12, 26, 50-52).

Reduction of lipid peroxidation specifically in mitochondria

of the esophageal cells in situ has not yet been

demonstrated, but irradiation of MnSOD-PL-treated

esophageal cells in culture reduced irradiation-induced

apoptosis (38). Several published studies (45-49) suggest

that there are tumor-specific lipid peroxidative changes and

that redox balances that may differ between tumors and

normal tissues. The present data further argue for the safe

use of radioprotective MnSOD-PL gene therapy of the

esophagus in lung cancer patients. The present report

advocates for the use of MnSOD-PL gene therapy in clinical

esophageal radiation protection (43, 44), and suggests that

the mechanism of protection is in part attributable to gene

therapy mediated reduction in irradiation-induced lipid

peroxidation.
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