Expression of Vascular Endothelial Growth Factor (VEGF) and Association with Microvessel Density in Benign Prostatic Hyperplasia and Prostate Cancer

DIMITRIOS STEFANOU, ANNA BATISTATOU, SEVASTI KAMINA, EVDOKIA ARKOUMANI, DIONYSIOS J. PAPACHRISTOU and NIKI J. AGNANTIS

Department of Pathology, University of Ioannina Medical School, 451 10, Ioannina, Greece

Abstract. Background: Tumor angiogenesis is an absolute requirement for tumor growth and a prognostic factor for various malignant neoplasms. Recent reports in the literature have addressed the importance of the VEGF system in benign prostatic hyperplasia (BPH) and adenocarcinoma, however the results are controversial. The aim of the present study was to determine and compare the levels of VEGF expression and vascularity in BPH and prostate carcinoma. Materials and Methods: We examined 60 prostate adenocarcinomas and 64 benign prostatic hyperplasias. Angiogenesis was estimated by determining microvessel counts (MVC), with the use of anti-CD31 and anti-CD34 antibodies. Expression of VEGF was also evaluated immunohistochemically. Results and Conclusion: Our data showed that angiogenesis was more prominent in carcinomas than in BPH. Furthermore, increased MVC was significantly associated with high-grade carcinomas. Angiogenesis was correlated with VEGF expression and it was, at least in part, mediated by the latter. Thus, prostate adenocarcinoma may represent a suitable neoplasm for antiangiogenic treatment in combination with conventional therapies.

The prostate is a compound tubuloalveolar gland, which is commonly affected by two major processes, hyperplasia and malignancy. Benign prostate hyperplasia (BPH) is an extremely common disease in men over the age of 50. The cause is not completely understood, but there is little doubt that it is related to the action of androgens. Carcinoma of the prostate is the most common form of cancer in males and the second leading cause of cancer deaths (1). Little is known about the cause of prostatic cancer, however hormone levels are believed to play a role. Prostatic carcinoma is an heterogeneous disease with various morphological patterns and underlying genetic alterations even in the same patient (2). The most consistent common denominator between benign and malignant prostate disease is angiogenesis. Angiogenesis is the generation of new blood vessels, once the primary vascular plexus has been formed. Prostate adenocarcinoma is the urological malignancy where angiogenesis may play a major role in the development and progression of the tumor. Recent experimental data have provided evidence that prostatic vasculature may be regulated by androgens in rats (3).

Solid tumor growth beyond the size of 2 mm is absolutely dependent on vascularization. Judah Folkman three decades ago revealed that tumors require new vessel formation for subsequent growth and development (4). Angiogenesis provides nutrients to growing tumor cells and it is also critical for the distant spread of neoplastic cells. The number/density of microvessels (MVC, microvessel count/MVD, microvessel density), as a measure of tumor angiogenesis, represents the neovascularization ability of the tumor and is an important prognostic factor for increased metastatic potential and worse prognosis in various human carcinomas (5-10).

In order to achieve a functional vasculature, tumor cells produce, or induce the production by other cells of a large number of angiogenic factors (11). Several growth factors and cytokines have been identified, some stimulating and some inhibiting the angiogenic process. Among them most prevalent are basic fibroblast growth factor (bFGF), angiogenin, transforming growth factor-b (TGF-b) and vascular endothelial growth factor (VEGF) (12,13). VEGF is a secretory glycoprotein that acts as a specific endothelial mitogen and can induce vascularization around actively growing tumor cells. Recent studies have demonstrated the
presence of increased VEGF mRNA and protein and correlated it with worse prognosis in gastric, colorectal, bladder and lung carcinomas (9,14-16).

Recent reports in the literature have addressed the issue of the importance of the VEGF system in the development of normal prostate, prostatic hyperplasia and carcinoma (1,17,18).

The aim of the present study was to determine and compare the levels of VEGF expression and vascularity in prostatic hyperplasia and carcinoma.

Materials and Methods

Our material consisted of 60 radical prostatectomy specimens with prostate adenocarcinoma of various Gleason scores (36 low-grade, Gleason score 2-6 and 24 high-grade adenocarcinomas, Gleason score 7-10), all without lymph node metastases and 64 suprapubic prostatectomies for benign prostate hyperplasia. The mean age of the patients was 62 years for BPH (range 52-74) and 63 years for prostate adenocarcinoma (range 51-73).

Immunohistochemistry. We used the EnVision System and the monoclonal antibodies VEGF (Neomarkers-LabVision, Fremont, CA, USA), CD31 (DAKO, Carpinteria, CA, USA) and CD34 (Biogenex, San Ramon, CA, USA). Briefly, 5-μm-thick histological sections from formalin-fixed paraffin-embedded blocks of tumor tissue were dewaxed in xylene, rehydrated through graded alcohols, immersed in 10mM Tris and 0.5 M EDTA, pH 9.0 and microwaved twice for 5 minutes each. Subsequently, the sections were incubated with 0.3% H₂O₂ for 30 minutes to block endogenous peroxidase activity. The sections were then incubated overnight at 4°C with the primary antibodies (dilutions: VEGF, 1:50; CD31, 1:50; and CD34, 1:50). Non-specific binding was blocked by incubating the sections for 30 minutes with Blocking Solution (DAKO). Detection was carried out using the EnVision System kit (DAKO) with diaminobenzidine as chromogen. Counterstaining was performed with hematoxylin Harris.

Microvessel detection and counting. Vascularity was measured by the average number of CD31-and CD34-positive vessels, as described previously (19). Briefly for each slide the most intense region of neovascularization ("hot spot") was identified at low power (X10 objective lens and X10 ocular lens). Within this selected area three neovascularization ("hot spot") was identified at low power (X10 objective lens and X10 ocular lens). Within this selected area three areas of high staining were counted. No counts were performed in areas of necrosis or hemorrhage. Vessels within muscular walls or lumens larger than approximately eight red blood cells were excluded from the count. Vessels had to be separated clearly from each other to be counted. No counts were performed in areas of necrosis or inflammation. In all cases MVC was determined independently by two pathologists. The median value of MVC with the use of the factor CD34 antibody was 90 microvessels (range: 40-200 microvessels). This count was used as the cut-off point to distinguish low from high MVC. The median value of MVC with the use of the factor CD31 antibody was 82 (range: 28-230 microvessels).

VEGF expression. The percentage of epithelial cells that exhibited a positive cytoplasmic immunoreactivity to VEGF was determined by counting at least 500 epithelial cells in each case. The median value (25%) was used as the cut-off point to distinguish low (0-25% positive cells) from high (>25% positive cells) VEGF-expressing specimens. The intensity of the staining was recorded as follows:<: no staining, +: mild staining, 2+: moderate staining, 3+: intense staining.

Statistical analysis. For the statistical analysis, VEGF expression and MVC were considered dichotomous variables, using the cut-off values described above. VEGF and MVC were compared in the carcinoma group with respect to Gleason score with the Pearson's Chi-squared test. The strength of the association between VEGF expression and MVC was assessed with Kendall's tau-b test. Analyses were performed in SPSS 10.0. P-values were two-tailed.

Results

VEGF expression in BPH and prostatic carcinoma. VEGF immunoreactivity was detected in 52 (81.25%) of 64 hyperplasias and in all adenocarcinomas. Cytoplasmic immunostaining was detected in all cases (Figures 1A, 1B). In prostate cancer cases different grades expressed various intensities of VEGF staining. Specifically, 14 of the 36 low-grade carcinomas (38.9 %) and 22 of the 24 (91.7%) high-grade carcinomas showed high expression of VEGF (Table I). Besides tumor cells, in many cases tumor stromal cells and vascular endothelium were stained as well. The immunoreactivity varied from negative to strongly positive and was heterogeneous within positively stained foci. A small proportion of non-malignant glandular epithelium within prostate cancer specimens(<10% of epithelial cells) was also positively stained for VEGF, but the staining intensity was low.

BPH specimens contained foci of positively stained gland including stromal cells. 37.5% of BPH cases showed high expression of VEGF (Table I).

VEGF immunoreactivity in epithelial cells ranged from negative to strongly positive and was statistically significantly higher in malignant than in benign prostate (p<0.05). Increased expression of VEGF was significantly correlated with high tumor grade (p<0.01). Highly differentiated carcinomas showed a predominantly low expression of VEGF (Table I).

Microvessel counts in BPH and prostatic carcinoma. By staining with two different antibodies, we noted small differences in microvessel staining. The central tumor areas appeared to be more highly vascularized ("hot spots"). Among the 60 prostate carcinomas, 37 (61.7%) exhibited increased microvessel count (MVC>90) (Figure 2A). Specifically, 47.2% of the low-grade (17/36) and 83.3% of high-grade (20/24) carcinomas showed a high microvessel count (Table I). The vascular networks, as highlighted by immunohistochemistry, appeared more disorganized in malignant than in normal prostate. Regarding BPH, 50% of the cases studied exhibited high MVC (Figure 2B, Table I).
There was a statistically significant difference in MVC between BPH and prostatic carcinoma ($p<0.001$). Increased MVC was significantly associated with high tumor grade ($p<0.05$).

Assessment of the relationship between VEGF expression and angiogenesis revealed a statistically significant relationship between VEGF staining and MVC ($p<0.01$).

Discussion

Angiogenesis in cancer plays a pivotal role in tumor growth, maintenance and metastatic potential (5-10). The new microvessels that are generated in tumors differ from those of non-neoplastic tissues. They are more fragile and irregular, with increased permeability and higher proliferation rate than that of normal endothelial cells. In current studies angiogenesis is preferentially assessed by immunodetection of the endothelial marker CD31, which recognizes the PECAM-1 endothelial membrane antigen or CD34, which displays lymphatic immunostaining as well. Immunostaining for CD31 and CD34 is more specific for capillary detection than Factor VIII, which does not stain all capillary endothelia in tumor tissues (10,20).

Much research has focused on the key molecules that regulate the new vessel formation. One of the most important angiogenetic molecules is VEGF, also known as VPF (vascular permeability factor), a potent and specific angiogenesis-related cytokine that is responsible for endothelial cell differentiation, migration, proliferation, tubular formation and vessel assembly (12). There are five known VEGF isoforms: VEGF121, VEGF165, VEGF145, VEGF189 and VEGF206, of which VEGF165 is the most abundant in human tissues (21). VEGF121 and VEGF165 are secreted isoforms and are potent mitogens for endothelial cells. In the present study we used an antibody that recognizes all isoforms. Several studies have shown that VEGF is closely correlated with the process of neoavascularization and prognosis in many solid tumors (5-10, 22).

Regarding prostate cancer, it is clear that it leads to patient death when tumor cells progress to a dedifferentiated state, where they become completely androgen-independent and form metastases (mainly in bones). Several processes participate in generating such poorly-differentiated and invasive prostatic cancer cells. One of them is the formation of a network of new capillaries, which are believed to be dependent on angiogenic factors originating from neoplastic cells (1). Along these lines, in prostate gland several inducers of angiogenesis such as FGF-2, interleukin-8 (IL-8), TGF-β1, thymidine phosphorylase etc. have been shown to be expressed by the epithelial and stromal cells (23-27). Increased expression of VEGF has been observed in BPH and in prostatic cancer (24, 27-30). In cancer, it has been shown that VEGF levels correlated with Gleason score, tumor grade and disease-free survival (28, 31). Based on such data, some investigators have proposed that VEGF-induced neovascularization begins in BPH and that it keeps progressing in a stepwise fashion in the malignant states (30, 31). However, not all researchers agree (24, 32) and thus the exact role of angiogenesis in prostate cancer has not yet been determined.

In our study, detectable VEGF staining was observed in all carcinoma cases and in a high proportion of benign hyperplasias. The localization of the immunohistochemical staining in combination with published reports on VEGF mRNA (24,30,32) support the concept that VEGF is synthesized predominantly by prostatic hyperplastic and neoplastic epithelial cells. The majority of staining of endothelial cells could be accounted for by VEGF-binding to specific endothelial cell receptors. Stromal VEGF immunoreactivity could be attributed to binding of VEGF, which is a heparin-binding growth factor, to extracellular matrix proteins (30) or to production of VEGF by stromal cells. Along these lines, stromal cells are believed to play a role in prostate cancer development and progression (33). Consistent with most reports, we noted no significant VEGF expression in normal prostatic epithelium.

In the statistical analysis of our data we noted a positive correlation between the expression of VEGF and microvessel density. This is in accordance with previous studies (19, 23), where tumor vasculature was accessed by CD31, CD34 or Factor VIII immunodetection, and reflects the impact of VEGF on the angiogenetic process of the prostate gland.

Regarding microvessel count, we observed a higher mean value in BPHs than in normal prostate, suggesting that angiogenesis plays a role in the benign neoplastic process of BPH. Thus, the hyperplastic prostate differs from the normal one from the pathological and the angiogenetic points of view.

It is not clear from the literature whether angiogenesis in prostate cancer, as expressed by MVD or MVC, is a prognostic indicator. The reports in the literature are controversial (13, 34-42). Weidner et al. examined patients with prostate adenocarcinoma and found a correlation between MVD and metastatic disease (34), while Brauer et al. found correlation between MVD and stage (35). Offerens et al. showed that MVD was an independent prognostic parameter useful in conjunction with other known markers in human prostate cancer (36). Silverman et al. examined radical prostatectomy specimens with Gleason scores between 5-7 and found that MVD correlated with PSA (37). However, Rubin et al. did not find any association between Gleason score, tumor stage, surgical margin status or seminal vesicle invasion (19). Bettencourt et al. demonstrated an association between MVD and Gleason score and tumor stage (38), and Lissbrant et al. showed that vascular density is a predictor of cancer-free survival in patients with adenocarcinoma (39).
Figure 1. A. Expression of VEGF in benign prostatic hyperplasia (X400). B. Expression of VEGF in high-grade prostate carcinoma (X400).

Figure 2. A. Immunohistochemical detection of CD31 in benign prostatic hyperplasia (X100). B. Immunohistochemical detection of CD31 in high-grade prostate carcinoma (X100).
Table I. Microvessel counts and VEGF expression in BPH and prostate carcinoma.

<table>
<thead>
<tr>
<th>Histology</th>
<th>n</th>
<th>High MVC</th>
<th>High VEGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPH</td>
<td>64</td>
<td>32 (50%)</td>
<td>24 (37.5%)</td>
</tr>
<tr>
<td>Carcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-grade</td>
<td>36</td>
<td>17 (47.2%)</td>
<td>14 (38.9%)</td>
</tr>
<tr>
<td>High-grade</td>
<td>24</td>
<td>20 (83.3%)</td>
<td>22 (91.7%)</td>
</tr>
</tbody>
</table>

While Gettman et al. reported on the lack of significant microvessel density in patients with T2 adenocarcinoma of the prostate (40). We have shown that increased MVC was significantly associated with low differentiation.

Finally, our results show a widespread distribution of VEGF in prostate cancer and BPH specimens and suggest that VEGF contributes significantly to the increased vascularity observed in these conditions. Besides being an important angiogenic inducer, VEGF may play an active role in growth and progression of prostate tumors (43). This hypothesis is supported by studies showing that the VEGF and VEGF receptor Flk-1 system may be involved in the process of prostate malignant transformation and tumor progression (44). Interestingly, androgens seem to regulate VEGF expression in the prostate, since castration acts through the VEGF system to inhibit angiogenesis and thus induce apoptosis in prostatic cancer cells (45). In addition, our data indicate that the angiogenic phenomenon may have an important role in the progression of these neoplasms and this finding is in agreement with most reported studies.

In conclusion, our data showed that angiogenesis was more prominent in carcinomas than in BPH. Furthermore, increased MVC was significantly associated with high-grade carcinomas. Angiogenesis was correlated with VEGF expression and it is, at least in part, mediated by the latter. Our observations, strengthen the case for novel research avenues on VEGF and other angiogenesis-inducing molecules, which may become useful prognostic markers and serve as a basis for the development of antiangiogenic strategies within the therapeutic interventions in prostatic cancer (46,47).

References

Received July 9, 2003
Revised October 22, 2003
Accepted December 11, 2003