
Abstract. Background/Aim: Diabetic retinopathy (DR) is
a type of retinal damage caused by a complication of
diabetes and is a major cause of blindness in working-age
adults. Ecto-NOX disulfide-thiol exchanger 1 (ENOX1) is
a member of the ecto-NOX family involved in the plasma
membrane electron transport pathway. This study aimed to
investigate the role of ENOX1 in the development of DR.
Materials and Methods: Human retinal endothelial cells
(HRECs) and human retinal pigment epithelial cells
(HREpiCs) exposed to a high concentration (25 mM) of D-
glucose and type 2 diabetes (T2D) mice (+Leprdb/+Leprdb,
db/db) with retinopathy were used as models to determine
the ENOX1 expression levels there. Results: Our results
showed that ENOX1 expression levels did not significantly
change in both HRECs and HREpiCs under hyperglycemic
conditions for 48 h. Nevertheless, ENOX1 expression increased

significantly in T2D mouse retinas, particularly in the
photoreceptor layer, compared to the control mouse
retinas. Conclusion: Different retinal ENOX1 expression
in T2D mice and control mice suggested that ENOX1 may
be involved in DR development.

Diabetic retinopathy (DR) is a severe microvascular
complication of diabetes and is the leading cause of
blindness in working-age adults (1). Risk factors, including
poor glycemic control, long duration of diabetes,
hypertension, hyperlipidemia and albuminuria, have been
found to be associated with DR development (2-6).
Nevertheless, the mechanisms underlying DR have not yet
been clarified, and the pathogenesis of the condition is
believed to be complex and multifactorial (7).

Ecto-NOX disulfide-thiol exchanger 1 (ENOX1) is a
member of the ecto-NOX family, which is involved in
plasma membrane electron transport pathways that are
essential for a variety of functions, including cellular
defense, intracellular redox homeostasis, control of cell
growth and survival (8). ENOX1 exhibits both NADH
oxidase activity and protein disulfide-thiol interchange
activity, and normally responds to hormones and growth
factors (9-11). It is expressed in several cell types, including
the endothelial cells (12). A previous study demonstrated that
the interferon RNA-mediated inhibition of ENOX1
expression suppressed endothelial cell migration as well as
their ability to form tubule-like structures (13). A subsequent
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study showed that the pharmacological targeting of ENOX1
in endothelial cells could influence the expression of proteins
involved in cytoskeletal reorganization, and that ENOX1
activity correlated with elevated NADH concentrations to
influence cytoskeletal reorganization and angiogenesis (14).
A follow-up study, using morpholino technology as well as
pharmacological targeting of ENOX1 during embryogenesis
in a zebrafish model, revealed that ENOX1 is required for
vascular development (12). Moreover, genetic or chemical
suppression of ENOX1 significantly increased radiation-
mediated caspase 3-activated apoptosis (13). Thus, ENOX1
responds to hormones and growth factors, such as insulin
and epidermal growth factor, and is likely involved in
angiogenesis and apoptosis pathways, with the ability to
regulate the oxidation of NADH to NAD, leading to an
increase in reactive oxygen species (ROS). Collectively,
these functions indicate that ENOX1 likely plays an
important role in the pathogenesis of DR.

Therefore, in the present study, we used human retinal
endothelial and pigment epithelial cells exposed to a high
concentration of D-glucose to determine the level of ENOX1
expression. In addition, type 2 diabetes (T2D) mice with
retinopathy were also used to understand the possible role of
ENOX1 in the DR development.

Materials and Methods
Cell culture. Human retinal microvascular endothelial cells (HRECs)
purchased from Cell Biologics Inc (Cell Biologics, Inc., Chicago, IL,
USA) and human retinal pigment epithelial cells (HRPEpiCs)
purchased from ScienCell Research Laboratories (ScienCell
Research Laboratories, Carlsbad, CA, USA) were used for in vitro
experiments. HRECs were maintained in tissue culture flasks pre-
coated with a gelatin-based solution and incubated in complete
human endothelial medium (Cell Biologics, Inc., Chicago IL, USA)
(15). HRPEpiCs were maintained in tissue culture flasks pre-coated
with poly-L-lysine overnight and grown in a complete medium
consisting of a mixture of epithelial culture medium containing 2%
fetal bovine serum, epithelial cell growth supplement, and
penicillin/streptomycin solution (ScienCell Research Laboratories,
Carlsbad, CA, USA). The cells were incubated with 5 mM (normal
condition), 25 mM D-glucose or 25 mM L-glucose for 48 h after
inoculation and were maintained at 37˚C in a humidified incubator
with 5% CO2. L-glucose treatment was used as an osmotic control
for the experiments. Each set of experiments was performed three
times independently.

T2D mouse model. T2D mice (BKS.Cg-Dock7m+/+Leprdb/JNarl,
abbreviation db/db), and their non-diabetic littermates (control
mice, abbreviation +/+) were obtained from the National
Laboratory Animal Center (Taipei, Taiwan) (16, 17). Six male mice
per group were grown for 32 weeks during the experiment (15). All
the mice were housed under a 12 hour light/dark condition with
free access to water and food. Blood samples were obtained from
the tail veins and the blood glucose levels were monitored by
Accu-Chek blood glucose meters every two weeks (Roche,
Mannheim, Germany). All animal care and handling were approved

by the Institutional Animal Care and Use Committee of China
Medical University (CMUIACUC-2017-328-1).

Western blot. Mouse retina tissue protein was extracted busing the
radio-immunoprecipitation lysis buffer (Sigma-Aldrich, St. Louis,
MO, USA), containing protease inhibitors and phosphatase
inhibitors (Roche, Indianapolis, IN, USA). 20 μg of protein extracts
were separated using 12% (w/v) sodium dodecyl sulfate-
polyacrylamide gel and were then transferred to 0.45 μm pore size
nitrocellulose membranes (Millipore, Billerica, MA, USA). The
membranes were incubated with anti-ENOX1 primary antibody
(dilution 1:500; Novus Biological, Littleton, CO, USA) overnight
at 4˚C, followed by incubation with horseradish peroxidase-
conjugated secondary antibody (GeneTex, Austin, TX, USA) at
room temperature for 1 h. Anti-β-actin (dilution 1:6,000; Novus
Biological) was used as an internal control. Protein signal was
detected using an enhanced chemiluminescence system (Syngene’s
ChemiGenius XE Bio Imaging System, Maryland, USA). Protein
expression was quantified using the ImageJ program (NIH,
Bethesda, MD, USA) and was normalized to the internal control.

Immunohistochemistry. Paraffin-embedded mouse eye tissues were
sliced into 5 μm sections. The sections were deparaffinized and
soaked in a 3% hydrogen peroxide solution in distilled water for 5
minutes to counteract endogenous peroxidase reactions. Further, the
sections were incubated with anti-ENOX1 primary antibody
(dilution 1:100; LifeSpan BioSciences, Seattle, WA, USA), followed
by incubation with horseradish peroxidase-conjugated secondary
antibody. The presence of peroxidase was revealed by the addition
of 3, 3’-diaminobenzidine tetrahydrochloride solution and
counterstaining with hematoxylin to color the nuclei cell blue.

Statistical analyses. Statistical analysis was performed using IBM
SPSS Statistics 22 (IBM Co., USA). The relative ENOX1
expression levels are presented as mean±SD, and the differences
between the expression levels in T2D and control mice were
compared using the Student’s t-test. The relative ENOX1 expression
levels in retinal cells with different treatments were compared by
one-way analysis of variance (ANOVA), as specified in the figure
legends. p<0.05 was considered statistically significant.

Results

We used a western blot assay to determine the expression level
of ENOX1 in HRECs and HRPEpiCs under different glucose
concentrations (Figure 1A). The retinal cells were treated with
normal (5 mM of D-glucose) or high concentration of D-
glucose (25 mM) or osmotic control L-glucose (25 mM) for
48 h. The results showed that the expression levels of ENOX1
slightly increased in cells treated with high concentration of
D-glucose compared to cells treated with normal glucose
condition, but no significant difference was observed in both
cell types (Figure 1B).

db/db T2D mice at 32 weeks of age exhibited features of
the early clinical stages of DR, as reported previously (15).
We then compared the protein expression levels of ENOX1
in the retina of T2D and of non-diabetic control mice at 32
weeks of age (Figure 2A). The western blot assay showed
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that ENOX1 was much more highly expressed in the retinas
of the T2D mice compared to the control mice (relative
ENOX1 expression: T2D mice:1.05±0.14 versus control
mice:0.53±0.04; p=0.008, Figure 2B). Further results
obtained from immunohistochemical staining also showed
higher expression levels of ENOX1 in the T2D mice retina
compared to those of the control mouse retinas, with
particularly abundant expression detected in the photoreceptor
layer (arrows in Figure 3).

Discussion

To the best of our knowledge, the present study is the first
report of increased ENOX1 expression in T2D mouse retina,

particularly in the photoreceptor layer, suggesting a potential
role in retinopathy development. We have previously
conducted a genome-wide association study and have
identified several susceptibility loci associated with DR in
the Taiwanese population (18-22). Based on this genome-
wide association study, we have also identified that the T
allele of single nucleotide polymorphism rs7985254 located
in the ENOX1 gene is associated with increased DR risk
(odds ratio=2.04, 95% confidence interval=1.37–3.02,
p=0.00041). This suggested that ENOX1 also plays an
important role in T2D patients with DR.

Several studies indicate that the inhibition of ENOX1
expression in endothelial cells can influence the cytoskeletal
reorganization and angiogenesis (12-14). Angiogenesis plays
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Figure 1. (A) Representative western blot image of ENOX1 expression in human retinal microvascular endothelial cells (HRECs) and human retinal
pigment epithelial cells (HRPEpiCs) under high glucose condition for 48 h. (B) ENOX1 expression relative to that of β-actin in retinal cells under
high glucose condition for 48 h. Data are presented as mean±SD and the differences between means were compared by ANOVA.

Figure 2. (A) Representative western blot image of ENOX1 expression in T2D and control mouse retina. (B) ENOX1 expression relative to that of
β-actin in mouse retina at 32 weeks of age. Data are presented as mean±SD. *p=0.008 (Student’s t-test).



a crucial role in the development of DR, particularly in the
proliferative DR stage, which is characterized by the
formation of new leaky vessels spreading in the retina (23).
In this study, we observed that the ENOX1 expression level
increased in the T2D mice with DR compared to control
mice. Further studies should investigate the mechanism of
action of ENOX1 in the pathogenesis and progression of DR.
In addition, ENOX1 was shown to exhibit NADH oxidase
activity, which catalyzes the one-electron reduction of
oxygen to superoxide anion via oxidizing cytosolic NADH
to NAD (24). NADH oxidase and the mitochondrial
transport chain can produce ROS, a major source of which
in vascular cells is the activity of NADH oxidase (25). When
ROS overwhelm the cellular antioxidant defense system,
either through an increase in ROS levels or a decrease in the
cellular antioxidant capacity, oxidative stress occurs. Several
clinical and experimental evidence has clearly demonstrated
that oxidative stress is increased in the retina and its capillary
cells in diabetes, which is thus considered to be a key event
in the pathogenesis of DR (26). Previous reports have also
indicated that ROS derived from NADH oxidase are
involved in the apoptosis of retinal pericytes, which is
caused by their chronic exposure to high glucose (27). 

In the present study, we observed an increased ENOX1
expression in the photoreceptor layer in T2D mice retina.

Previous studies have suggested that diabetes-induced
structural and functional alterations in photoreceptors may
play a role in DR pathogenesis (15, 28). Such retinal
abnormalities have also been reported in other studies in db/db
mice over 8-24 weeks of diabetes (29, 30) and our previous
study at 32 weeks of age (15). In addition, mitochondria are
abundantly present in the photoreceptor inner segments.
Mitochondria not only cross-talk with NADH oxidases (31),
but also play a key role in activating intrinsic apoptosis in
mammalian cells (32). Studies of ENOX1 co-localization with
mitochondria-specific proteins may reveal valuable
information in the future. Since photoreceptors may play an
important role in diabetic-induced degeneration of the retinal
capillaries (28), increased ENOX1 expression in T2D mouse
retina photoreceptor should be further investigated to elucidate
the mechanism of DR pathogenesis.

In conclusion, different ENOX1 expression levels in T2D
and control mouse retinas suggest that ENOX1 may be involved
in DR development. Experiments that can prove that ENOX1
can reverse some phenotypic characteristics of DR, could make
it an ideal drug target for future DR therapeutic strategies.
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Figure 3. Representative images of immunohistochemical staining of ENOX1 expression in mouse retina at 32 weeks of age (magnification=400X).
Hematoxylin was applied to color the nuclei cell blue. ENOX1 expression is increased in T2D mice retina and prominently expressed in the
photoreceptor inner segments (arrow).
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