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Abstract. Ar the cellular level, free radicals are tightly
controlled by an inducible antioxidant program, since at low
non-hazardous amounts they contribute to physiological
signalling and homeostasis. However, high levels of oxidative
stress promote the accumulation of damaged biomolecules, the
impairment of cell signalling pathways and the increase of
oncogenic hits. As the intracellular and extracellular levels of
oxidative stress increase during ageing or in various diseases,
so does the amount of damaged biomolecules, since the repair
mechanisms are also targets of oxidative damage and thus
become gradually ineffective over time. Depending on the
severity of the biomolecular damage, the responses of normal
human cells to oxidants may range from transient growth
arrest to premature senescence, and even to cell death.
Although some responses are clearly tumour suppressing
(apoptosis), others may be potentially oncogenic as they
combine damage accumulation with a retained ability for
proliferation (transient growth arrest) or with inflammation
(senescence, necrosis). This array of events significantly
increases the likelihood of the appearance of tumour-initiating
cells, which may then give rise to pre-neoplastic focal lesions
and eventually to neoplasia. In the present manuscript, we will
focus on the role of free radical-mediated biomolecular
damage and inflammation in tumorigenesis.

Tumorigenesis is a multistage, multifactorial process that is
generally described by three stages: initiation, promotion, and
progression. Specifically, several factors disrupt the molecular
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signalling networks, providing tumour cells with sufficient
proliferative advantage and diversity to evolve from healthy
tissue and eventually to metastasize (1, 2). In 2000, Hanahan
and Weinberg (3) proposed that six essential alterations in cell
physiology (hallmarks) were required to promote malignant
growth, leading to the development of a tumour. These
alterations included self-sufficiency in growth signals,
insensitivity to growth-inhibitory signals, evasion of apoptosis,
limitless replicative potential, sustained angiogenesis, and
tissue invasion and metastasis; recently, this list has been
expanded to also include the evasion of immune surveillance
and the deregulation of cellular energetics (4, 5). Additional
tumour-enabling include cancer-related
inflammation, genome instability and mutation, as well as
oxidative and proteotoxic stress (5, 6-8).

The stress phenotypes of cancer cells include (among
others) DNA damage/replication stress, proteotoxic stress,
mitotic stress, metabolic stress and oxidative stress. Although

characteristics

these features are not restricted to cancer cells, they certainly
represent a common set of oncogenesis-associated cellular
stresses with which the cell must cope (7).

During recent decades, the role of free radicals, mainly
reactive nitrogen species (RNS) and reactive oxygen species
(ROS), in cellular physiology has been studied extensively
(9). Oxygen free radicals are produced by both endogenous
and exogenous sources (see below) and are potential
carcinogens because at high levels they cause significant
biomolecular damage contributing to all three stages of
tumour formation, namely mutagenesis, tumour promotion,
and progression (10-12).

Inflammation has been linked to cancer since the end of
the 19th century when Rudolph Virchow first noted
leucocytes in neoplastic tissues and made a connection
between inflammation and cancer. As was later shown,
tumours also often develop at sites of chronic inflammation
(13). Although inflammation, both related to increased
endogenous oxidative stress and as a cause from oxidants
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exposure is linked with cancer, only recently have the
mechanisms underlying this association started to be
elucidated. For example, it has been demonstrated that
inflammation down-regulates the mismatch repair (MMR)
proteins by a variety of mechanisms leading to microsatellite
instability (MSI) (6). Growth factors and chemokines
produced by inflammatory cells also induce the
overexpression of a number of transcription factors [e.g.
nuclear factor-kappaB (NF-kB), signal transducer and
activator of transcription 3 (STAT3), activating protein-1
(AP-1), hypoxia-inducible factor-1 (HIF-1)], as well as an
altered expression of specific microRNAs in cancer cells that
promote the expression of genes related to cell growth,
apoptosis and invasion (14).

In the current review, we focus on the role of oxidative
stress-mediated biomolecular damage and inflammation in
tumorigenesis.

Signalling Pathways in Human
Cells Affected by Oxidants

Exogenous sources of free radical production include UV
light, X-rays, gamma rays, metal catalyzed reactions, and
atmospheric pollutants. Endogenous oxygen free radicals
may arise as second messengers during inflammatory
neutrophil and macrophage cell activation, in various signal
transduction pathways, or as by-products of normal aerobic
metabolism [i.e. oxidative energy or P450 metabolism,
peroxisome activity, or excessive stimulation of NAD(P)H
oxidases] (11, 15, 16). The survival of an organism depends
on the ability of its cells and tissues to adapt to or resist
stress, and repair or remove damaged molecules or cells. The
redox balance within the cell is achieved by the action of
antioxidants (vitamins C and E, and thiol antioxidants such
as glutathione and thioredoxin) and antioxidant enzymes
[superoxide dismutase (SOD), catalase, glutathione
peroxidase, glutathione reductase] (17).

The cellular responses to free radicals include a wide
range of mechanisms that are rapidly activated in response
to oxidative insults (11). At the heart of the antioxidant and
cellular detoxification program lie the Kelch-like ECH-
associated protein 1 (Keapl)-NF-E2-related factor-2
(NRF2) regulatory pathway, which plays a central role in
the protection of cells against oxidative and xenobiotic
damage (18). The actin-associated protein KEAP1 binds to
and tethers NRF2 in the cytoplasm; upon stress, this
association is disrupted resulting in the release of NRF2
which then translocates into the nucleus to perform its
transcriptional activity (19). Besides NRF2, ROS are also
involved in the activation of additional transcription factors
including, NF-KB, heat shock factor-1 (HSF1), AP-1, p53
and STATs (15, 20). NF-KB transcription factor is a dimer
in its active form, consisting of proteins from the REL
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family, namely p50, p52, ¢c-REL, v-REL, p65, and REL B
(21). NF-KB is involved in the regulation of a wide array of
different genes involved in stress response, inflammation,
immune function, differentiation, apoptosis, cell survival,
and growth (21, 22). Similarly to NRF2, HSF1 is kept
inactive in the cytosol in the absence of stress, mainly by
binding to HSP90 (23). Upon stress, the inhibiting
chaperones bind misfolded or damaged proteins, liberating
HSF1, which can then translocate to the nucleus and activate
several target genes (23, 24). The activation of AP-1 by
cytokines, H,O, or other physical and chemical stresses
mostly results in increased cell proliferation (25, 26), while
p53, the so-called guardian of the genome, is critically
involved in the processes of many different stress responses
(27). Besides the aforementioned nuclear transcription
factors, free radicals can also regulate a wide panel of
kinases or phosphatases, as well as the H-Ras oncogene and
the transforming growth factor-beta (TGF-f3) (11).

Among RNS, nitric oxide (NO) occupies a prominent
position as it is involved in physiological processes,
including vasodilatation, neurotransmission and host defence
(14). Low levels of NO are involved in the formation of
c¢GMP that, among other processes, ultimately regulate cell
growth and differentiation (14, 28). The effects of ROS on
the cell are also partly mediated by mitogen-activated protein
kinases (MAPKSs) (29). In mammalian systems, there are
three subfamilies of MAPKSs: extracellular signal-regulated
kinases (ERKs) that mediate cell proliferation, and c-Jun N-
terminal kinases (JNKs) with p38 MAPKSs (also known as
stress-activated protein kinases) that mediate stress responses
and apoptosis (30).

Oxidative Stress-mediated Biomolecular
Damage and Tumorigenesis

Increased oxidative stress is causally related to various
diseases, including atherosclerosis, cardiovascular disease,
diabetes, inflammatory joint disease, rheumatoid arthritis,
neurological diseases and a wide range of tumour types (31).
High levels of oxidative stress are established when the
production of free radicals exceeds the cell’s ability to
eliminate them, resulting thus in the deregulation of redox-
sensitive signalling pathways, as well as in the damage of
most cellular biomolecules, including DNA, proteins, sugars
and lipids (10, 32, 33).

ROS can cause DNA alterations, such as apurinic/
apyrimidinic DNA sites, oxidized purines and pyrimidines,
single- and double-strand DNA breaks (SSBs and DSBs),
and oxidatively generated non-DSB clustered DNA lesions
(OCDLs) (34, 35). DNA protein cross-linkages may also
arise that cannot be effectively repaired, due to cumulative
oxidative stress (36). The two most common DNA base
modifications are 8-oxo-7,8-dihydroguanine (8-oxodG) and
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2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapydG).
Both arise from the addition of a hydroxyl radical to the C8
position of the guanine ring, producing the 8-hydroxy-7,8-
dihydroguanyl radical that can be oxidized to 8-oxodG or
reduced to FapydG (37). The latter is an unstable open-ring
structure and seems to be the prevalent guanine-derived
lesion formed under low oxygen conditions (38). Hydroxyl
radical may also interact with pyrimidines giving rise, among
other products, to 5,6-dihydroxy-5,6-dihydrothymine
(thymine glycol) and 5,6-dihydroxy-5,6-dihydrocytosine
(cytosine glycol) (35). It has been estimated that in a given
cell, about 103 oxidative lesions per day are formed (39). Of
these, 8-0xodG and thymine glycol are used as markers of
oxidative stress, due to their abundance (35). The
apurinic/apyrimidinic DNA sites are mainly formed as
intermediates during the repair process of oxidized bases and
they have a high mutagenic potential as they are able to
block DNA polymerases (40). The interaction between
hydroxyl radicals and the deoxyribose backbone of DNA can
lead to SSBs and DSBs of DNA (35). When SSBs and
oxidized bases occur in a clustered formation (i.e. within two
or more bases within few helical turns), they give rise to
OCDLs which are complex, difficult to repair lesions that
can give rise to chromosomal instability (41). In addition,
ROS-mediated mutations in mitochondrial DNA (mtDNA)
are emerging as important contributors to tumorigenesis (42).
Sensitivity of mtDNA to ROS may relate to the fact that it
is located in close proximity to the respiratory chain, it is not
protected by histones and has a limited repair capacity (43,
44). Moreover, ROS can cause epigenetic alterations in
particular, alterations in the DNA methylation pattern of
genes. For example, exposure of hepatocellular carcinoma
cells to hydrogen peroxide induces the expression of the
transcription factor SNAIL which recruits histone
deacetylase 1 and DNA methyltransferase 1 on E-cadherin
gene promoter, resulting in gene silencing by
hypermethylation (45). Down-regulation of E-cadherin has
been correlated with epithelial-to-mesenchymal transition
(EMT) and metastasis in a wide range of carcinomas (46).
Interestingly, a number of tumour suppressor genes (e.g.
p]51NK4B and pl6'™NK4A) have been identified as being
silenced by oxidative-induced aberrant CpG island promoter
methylation (47, 48). These latter observations suggest that
there may be sites in the genome that are more susceptible
to oxidative stress-related pro-tumorigenic effects.
Sustained oxidative stress also affects the proteome
causing protein damage (e.g. via formation of peroxyl
radicals or by oxidation of cysteine residues) that triggers
conformational changes which ultimately lead to enhanced
or diminished binding capacity to other proteins or to DNA
(in the case of transcription factors), as well as to enzymatic
inactivation (49, 50). These modifications may lead to loss
of function, gain of function, or switch to a different

function. For instance, in the case of inhibition of
phosphatases, their inability to regulate kinase-mediated
transduction pathways can lead to alterations of
physiological functions such as aberrant cellular growth (51).

Apparently, the free radical-mediated biomolecular
damage will eventually promote the deregulation of the
various redox-sensitive signalling pathways. Deregulation of
AP-1 protein signalling may participate in oncogenic
transformation by interacting with activated oncogenes such
as H-Ras (52), while p53 signalling is disrupted in the
majority of human cancer types (53). Involvement of NF-KB
in tumorigenesis mostly occurs in tissues in which cancer-
related inflammation typically occurs (such as the
gastrointestinal tract and the liver); recent studies have also
shown that NF-KB signalling plays critical roles in EMT and
cancer stem cell physiology (22). In non-stressed cells, the
upstream regulator of p38 MAPKs (see above), apoptosis
signal-regulating kinase 1 (ASK1), is associated with
thioredoxin and thus, inhibited (54). When ROS levels
increase, this complex dissociates and ASKI1 exerts its
function by activating p38 MAPKs (55) leading to growth
arrest and/or apoptosis. On the other hand, in cancer cells,
ROS induce the hyperphosphorylation of JNK that leads to
AP-1 activation and to enhanced cellular proliferation (30).
ROS-generated during hypoxia can prevent the hydroxylation
(and thus, the degradation by the ubiquitin-proteasome
system) of the transcription factor HIF-1a, allowing its
translocation to the nucleus, where it dimerizes with HIF-1§3,
promoting the transcription of genes that mediate
proliferation and survival in conditions of limited oxygen
availability (56). Interestingly, recent studies revealed that
RAS-driven proliferation requires ROS buffering of RAS-
activated ERK1/2 activity (57), while the NRF2 antioxidant
and cellular detoxification program may enhance
oncogenesis in certain cellular settings (58). Finally, the
ataxia-telangiectasia mutated (ATM) protein kinase, which is
best known for its role in the DNA damage response, was
recently found to function as a redox sensor that controls the
levels of ROS in human cells (59).

Sustained oxidative stress or ROS-mediated deregulation
of cell signalling in the early phases of tumorigenesis may
trigger a wide panel of responses in normal human cells,
depending on the level of damage, including reversible cell
cycle arrest and repair, cellular senescence or death (apoptosis
or necrosis) (11, 20, 60, 61). Although some of these
responses are clearly tumour-suppressive (apoptosis), others
may be potentially oncogenic as they combine damage
accumulation with a retained ability for proliferation
(transient growth arrest) or with inflammation (senescence,
necrosis; see also below). It seems also that during
tumorigenesis, cancer cells gradually acquire higher levels of
oxidative stress. This property may relate to overproduction
of ROS by mitochondria with impaired electron transport
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chain and mtDNA damage (62), or to inactivation of
antioxidant enzymes. A decreased activity and expression of
the mitochondrial form of manganese superoxide dismutase
(Mn-SOD) has been reported in colorectal carcinomas (63)
and pancreatic cancer cells (64). High endogenous levels of
oxidative stress have also been found in various types of
leukaemia (65), in human colorectal carcinoma (66), as well
as in breast (67), stomach (68) and ovarian (69) cancer.
Moreover, ROS levels in prostate cancer cells correlate
positively to tumour aggressiveness (70).

These data clearly indicate that oxidative stress is at work
throughout the stages of tumorigenesis (20), either directly
by promoting biomolecular damage, or indirectly by
deregulating the signalling pathways involved in
proliferation, angiogenesis and metastasis. Cellular stress
responses may not always result in cell death as it is
becoming clear that transformed cells suppress stress signals
in order to survive. During the early stages of tumorigenesis,
this suppression is not complete and cells can still be
sensitized to stress by anticancer drugs (71), but in those
cells that progress towards a malignant phenotype this
suppression is accomplished. This may explain why an
anticancer therapy that is efficient in early stages of the
disease loses efficacy as the tumour advances.

Chronic Inflammation, Oxidative
Stress and Tumour Formation

Chronic inflammation is characterized by tissue destruction
due to active inflammatory responses that induce oxidative
stress and reduce the cellular antioxidant capacity. In some
cases, inflammation precedes the malignant transformation,
while in others, an oncogenic alteration induces an
inflammatory microenvironment that accelerates the
development of tumours. Two pathways linking inflammation
and cancer have been proposed. In the intrinsic one, activation
of different classes of oncogenes drives the expression of
inflammation-related programs that lead to the establishment
of an inflammatory milieu; while in the extrinsic one,
inflammatory conditions promote cancer development (72).
A number of chronic inflammatory and infectious diseases
that increase cancer risk have been described, including
autoimmune diseases (e.g. inflammatory bowel disease for
colon cancer) and microbial infections (e.g. Helicobacter
pylori for gastric cancer and mucosal lymphoma) (72). There
is also emerging evidence that prostatic inflammation may
contribute to prostate cancer growth by inducing hyperplastic
or neoplastic changes (73, 74), while pancreatic inflammation
may play a key role in the early development of pancreatic
malignancy (75). Epidemiological data have also
demonstrated a positive relation between colorectal
malignancy and obesity (76). B-Lymphocytes mediate chronic
inflammatory states that promote de novo epithelial
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carcinogenesis (77), while the acidic microenvironment
produced by the tumour cells inhibits the antitumor function
of cytotoxic T-lymphocytes (CTL) (78) and natural killer
(NK) cells (79). Interestingly, there are some notable
exceptions; rheumatoid arthritis is an example of a chronic
inflammatory disease without an increased cancer risk,
whereas oncogenic human papilloma viruses are examples of
cancer-prone chronic infections without inflammation (14).

The innate immune cells [neutrophils, monocytes/
macrophages, mast cells, dendritic cells (DC) and NK cells]
mediate the inflammatory response by releasing cytokines,
chemokines, matrix-remodelling proteases and free radicals.
Moreover, DC and NK cells activate, in principle via
cytokine release, the adaptive immune response (80).

A prolonged generation of ROS and RNS contributes to the
persistence and accordingly to the pathological consequences
of chronic inflammation (81). As mentioned, depending on the
level of ROS, different redox-sensitive transcription factors are
activated and coordinate distinct biological responses. A low
sustainable oxidative stress mainly induces NRF2, while an
intermediate amount of ROS triggers an inflammatory
response through the activation of NF-KB and AP-1. Finally,
high levels of oxidative stress trigger the disruption of electron
transfer, thereby resulting in apoptosis or necrosis (82). NF-
KB is a transcription factor linking inflammation and cancer.
NF-KB regulates several genes whose products inhibit
apoptosis and enhance cell cycle progression, angiogenesis
and metastasis (83). A number of NF-KB target genes encode
mediators of the innate immune response and inflammation,
which include cytokines, chemokines and cyclooxygenase 2
(COX2) (which leads to the production of prostaglandins), as
well as NOS?2 that is the inducible isoform of the nitric oxide
synthase (84). However, NF-KB can protect cells from
oxidative stress inducing the expression of ferritin heavy chain
and superoxide dismutase 2 (SOD2) (85, 86). Interestingly,
ROS seem to have an inhibitory effect on NF-KB activation in
lung epithelial cells (87).

Besides immune inflammatory cells, it also seems that
tumour-promoting inflammatory processes can be triggered
by senescent or necrotic cells. Specifically, it has been found
that young human cells, beyond telomere-dependent
replicative senescence (88), can also become senescent
(despite having long telomeres) if they are exposed to
subcytotoxic oxidative stress (60); these prematurely
senescent normal human cells accumulate during in vivo
human ageing (60, 88). Recent studies have shown a striking
increase in the secretion of pro-inflammatory proteins by
senescent cells, rendering this cellular state an important
additional contributor to chronic inflammation and
tumorigenesis (89). Similarly, necrotic cell death by acute
oxidative stress releases pro-inflammatory signals into the
surrounding  tissue  microenvironment that recruit
inflammatory cells of the immune system which, apart from
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Figure 1. Gradual increase of cellular oxidative stress triggers a series of responses that may favour tumourigenesis. Pro-tumourigenic effects mostly
relate to deregulation of signalling pathways and to extensive damage of all types of biomolecules.

surveying the extent of tissue damage and removing the
associated necrotic debris, may also, in the context of
neoplasia, be actively tumour promoting (90).

Collectively, these data indicate that the inflammatory
response triggered directly or indirectly by a prolonged state
of oxidative stress can have potent pro-tumorigenic effects.
Until recently, these effects were thought to affect only
tumour-surrounding cells (91), but evidence has been
provided that cytokines can also exert a detrimental function
in tissues distant from non-metastatic early stage tumours
(92). Indeed, an elevated serum level of chemokine (C-C)
ligand 2 (CCL2), that correlated with DSBs and OCDLs in
distant proliferative tissues of tumour-bearing mice has been
observed; CCL2 is thought to be produced by the activated
macrophages that were found to infiltrate not only the
tumour, but also distant tissues (92). These interesting
findings suggest that the onset of systemic aspects of cancer
may arise earlier than previously believed (93).

Conclusion

As cancer research progresses, we are becoming increasingly
aware that the abilities that cancer cells must acquire (self-
sustained growth, limitless replicative potential, angiogenesis)
or lose (insensitivity to growth-inhibitory signals and to
apoptosis) during tumorigenesis are not gained through a
single and unequivocal sequence of events (5). In this view,
the state of the cells (e.g. redox state) acquires a fundamental
importance as it can drive those changes by both altering the
balance of pathways involved in cell proliferation at the
proteome level, as well as by inducing direct genetic damage

(20). The notion that ROS can also trigger an inflammatory
response (81) and that, in turn, inflammation can contribute to
the establishment of increased oxidative stress in cells (84),
reveals that mutual reinforcement of certain, otherwise,
physiological conditions can determine a state of imbalanced
signalling which may lead to tumour initiation, promotion and
progression (Figure 1). Therefore, inflammation and oxidative
stress may lead to transformation of cells and tumour
progression through sustained stimuli. Interestingly, metastasis
has recently been proposed as a means of escape from
oxidative stress (94). Of note, the cytoskeleton rearrangement
underlying cell motility uses ROS as intermediates (95) and is
therefore facilitated by oxidative stress.

The modulation of ROS, and more generally of redox
homeostasis, holds promise as an effective cancer treatment
of high specificity targeting, mainly cancer cells, due to the
differences in ROS levels between normal and tumour cells
(62). Indeed, it has recently been demonstrated that a natural
compound, piperlongumine, was able to selectively kill
cancer cells by inducing an increase in ROS levels and
apoptotic cell death, both in vitro and in vivo (96); notably,
this effect was evident, irrespective of the cell’s p53 status. In
a similar, and relatively unexplored approach, the increased
reliance of transformed cells on systems that ameliorate the
deleterious effects of proteotoxic stress (e.g. chaperones or
the proteolytic systems) could be a promising strategy for the
development of novel cancer-targeting therapeutic agents.
Moreover, blocking a source of persistent inflammation can
enhance cancer immunotherapy, as was recently
demonstrated for CCL2 (97, 98). In conclusion, as more
levels of complexity are added to our current notion of
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tumorigenesis, we are getting closer to unravelling the
mechanisms that determine the various phases of human cell
transformation. This knowledge will eventually lead to the
development of novel combinatorial antitumour therapies.
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