
Abstract. Background/Aim: The time required before a mass
of cancer cells considered to have originated from a single
malignantly transformed cancer ‘stem’ cell reaches a certain
number has not been studied. Applications might include
determination of the time the cell mass reaches a size that can
be detected by X-rays or physical examination or modeling
growth rates in vitro in order to compare with other models or
established data. Materials and Methods: We employed a
simple logarithmic equation and a common logistic equation
incorporating ‘feedback’ for unknown variables of cell birth,
growth, division, and death that can be used to model cell
proliferation. It can be used in association with free or
commercial statistical software. Results: Results with these two
equations, varying the proliferation rate, nominally reduced by
generational cell loss, are presented in two tables. The resulting
equation, instructions, examples, and necessary mathematical
software are available in the online appendix, where several
parameters of interest can be modified by the reader
www.uic.edu/nursing/publicationsupplements/tobillion_Anderson
_Rubenstein_Guinan_Patel1.pdf. Conclusion: Reducing the
proliferation rate by whatever alterations employed, markedly
increases the time to reach 109 cells originating from an
initial progenitor. In thinking about multistep oncogenesis, it
is useful to consider the profound effect that variations in
the effective proliferation rate may have during cancer
development. This can be approached with the proposed

equation, which is easy to use and available to further peer
fine-tuning to be used in future modeling of cell growth. 

We present a brief review of cell growth kinetics as a
background for the assumptions of the equations offered in the
online appendix [www.uic.edu/nursing/publicationsupplements/
tobillion_Anderson_Rubenstein_Guinan_Patel1.pdf]. Normal or
malignantly transformed stem cells are believed to undergo two
forms of cell division: symmetric or asymmetric (1) (Appendix,
Table I A-C). Symmetric cell division generates two ‘identical’
cells, either stem or daughter cells; asymmetric division
generates one stem and one daughter cell. The relation between
these two patterns of proliferation and the extent to which they
can be ‘blended’ seem obscure. Factors that determine which
stem cells continue to replicate or are withdrawn into a ‘reserve’
have not been identified, but an important role is assigned to the
niche in which they reside (2). Retention by ‘parental’ stem cells
of a ‘conserved’ DNA and transfer of newly synthesized DNA
strands to daughter cells subject the former to fewer mutagenic
events from errors inherent in DNA replication (3). Daughter
cells entering the transit-amplifying cell population proliferate
for a time while undergoing various degrees of partial
differentiation. Estimates of the number of stem cells in
different experimental and clinical types of cancer have ranged
from <1% to >30%, depending upon the methods and criteria
used to identify them (4). 

Having served as the original source of proliferating
malignant daughter cells, replicating cancer stem cells
(CSCs) augment cancer growth by increasing the pool of
transit-amplifying daughter (D) cells. Gompertzian kinetics
(5), in which the exponential growth rate of enlarging tumors
eventually decreases, partly depends on a reduced rate of
proliferation and increased cell death. 

According to the stochastic CSC model, potentially any
cell may develop into a CSC (6), while in the stem cell
model, CSCs originate from resident non-transformed tissue
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stem cells (7). For our purposes, the terms ‘cancer’ and
‘tumor’ have been used interchangeably, although the latter
can be benign or malignant. 

Development of Many if not Most Solid
Carcinomas is not Linear but is Interrupted by
Prolonged Periods of Relative Quiescence

The development of many solid types of cancer, including
those of the breast, colon, prostate, and pancreas, occurs over
a number of years (8-10). A core of driver genetic and
possibly epigenetic events accompanied by numerous
progressor (10) or ‘passenger’ mutations that may not
directly contribute a growth advantage are present before the
final development of a CSC unresponsive to the constraints
on normal stem cell proliferation or limited by the
requirements of their tissue or organ of origin. Where their
development is largely stochastic, built-in delays in
oncogenesis seem explicable. The stem cells considered in
the assumptions for our equations are near or at the end of
their development and exhibit inappropriate self-renewal. 

The periods of delay followed by accelerated growth
periods are diagnostically ‘silent,’ presently excluding
detection of solid breast, colon, lung, and prostate cancer
during a time when they could be curable. The development
of pancreatic cancer involves an estimated decade between
the initiating mutation(s) and development of the non-
metastatic ‘founder’ cell (10, 11). The original founder
mutation might depend upon stochastic or hierarchically
determined events. Some five more years are required for a
metastatic capacity to develop. A series of mutations are
associated with these events, occurring during the intervals of
slow development. These genetic and epigenetic changes may
also be associated with a gradual transition from an epithelial
to a more mesenchymal-like phenotype as the cell population
develops from less benign to a malignant stem cell (12). 

Assumptions Regarding Estimates 
of Cancer Cell Growth

Estimates of the time required to generate a population from
one initial malignantly transformed cell or for ‘refilling’ a
treated tumor depend upon the assumptions chosen to
describe the responses of cell division, cell death, and their
relation to the transit-amplifying population. The extent to
which CSCs and daughter cells continue to proliferate is not
known. An average cell cycle time of about 24 hours is
assumed, based on data from cultured cells. Cell cycle times
from 40 to 100 hours have been estimated in transplanted
human tumors and in human carcinomas. 

The simplest exponential power relation, N=2r, which on
logarithmic transformation is log(N)=rlog(2), has been used
to estimate the number of generations (r) required to

generate N number of cells originating from an initial cell,
in this case imagined to be a CSC. Most of the stem and
daughter cancer cells envisioned in this study are considered
near or at the end of their malignant development and
capable of maximum rates of proliferation. During a
protracted development of the oncogenic process, precursor
cancer cells with reduced proliferation and depletion rates
are likely, and these may exhibit extended periods of slow
growth for a number of reasons. 

Logistic equations represent a more sophisticated
approach to describing the geometric growth of populations.
A typical logistic equation includes terms representing
‘feedback’ that alters initial and terminal rates of
proliferation. The general rate of growth of any population
(a microbial colony, for example) can be described as:
dN/dt= KxN – rxN2 for both K and r=1>0 (13,14). KxN is
the net growth rate: the excess of births over deaths. The
rxN2 term introduces a non-linearity, but the same
limitations remain due to the lack of quantitative information
about unavailable parameters. 

Order-of-Magnitude Estimates of the Time to
Appearance and Tumor Cell Refill Times by the
Exponential (Geometric) Growth Function

It is generally accepted that 1 mm3 of tissue originating from
a single cell after 20 doublings contains about 106 cells, after
27 doublings, some 0.5 × 109 cells are contained in a 0.5
cm3 mass, and after 30 to 32 doublings, about 109 cells can
be found (9). 

The logarithmic relationship log(N)=rlog(2), estimates the
number of generations to yield N cells from a single CSC,
specifically 109 cells occupying 1 cm3, a volume that can be
detected by careful physical examination. N could be
considered to approximate 2r, where r=p–d, where p is the
proliferation rate and d represents reduction of p due to cell
morbidity. An accelerated rate of proliferation of transit-
amplifying cells (which cannot be accounted) would increase
the apparent overall proliferation rate and reduce the time to
accumulate 109 cells. Initially, all or most daughter cells
remain in cycle but their activity diminishes as they partially
differentiate or die. A probably much less common
dedifferentiation from daughter cells to CSCs has been
suggested (15). In C57BL/6 mice chronically infected with
Helicobacter, repopulation of the stomach with bone marrow
cells which progress through metaplasia to intraepithelial
cancer has been reported (16). 

Table IA shows exponential model estimates of generation
and refill times with proliferation rates of r=1, 0, 5, 0.2, 0.1
and 0.01 (equivalent to 100, 50, 20, 10, and 1%). An
‘effective’ proliferation rate can be achieved in various ways.
If 55% of daughter cells and CSCs (expressed as a
percentage of p=1) are considered to have cycled in each
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generation and 5% of all proliferating cells die while the
remainder are differentiated and non-proliferative, the
estimated number of generations with a 24-hour (one
generation) cell cycle time to reach 109 cells from one initial
CSC would approximate 20.50r. Taking the natural logarithms
of both sides yields an answer of 59.8 days. Manual solution
of these simple equations is as follows. For convenience,
common (Briggsian) logarithms to base 10 rather than
natural (Naperian) logarithms to base e=2.71828 were used.
N=2r; 109=2r; log 109=rlog102; 9=0.31r; r=29.9 days. For
109=20.5r, 9+0.5×0.391=59.8. 0.5×109=2r, log10109=r×
log102+log102, 9-log102=0 301r or r=28.9 days. Asymmetric
or symmetric proliferative patterns generate similar results
because of the nature of the logarithmic relationship, the

assumptions chosen, and the lack of information regarding
the altering behavior of CSCs and daughter cells over time.
(Note that the other outcomes in the table vary proportionally
to whatever r value has been used to calculate the result.) As
the original assignment of CSCs and daughter cells changes
over time, their ratios under varying symmetry or asymmetry
would differ, depending upon circumstances (Appendix,
Figure 1A-C). The differing blended patterns result in a
potential form of feedback as the ratio of CSC to daughter
cells changes with increasing cell numbers (Appendix,
Figure 1B,C). 

Having established the time to generate 109 cells from a
single CSC under various conditions of r (Table IA), how many
fewer days would be required following an effective therapy
for only 8 CSCs (three days’ worth of growth) to repopulate
the tumor to 109 cells? Whether subtracting 3 days from the
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Table I. Estimates of generation and ‘refill’ times according to a simple
exponential model. One cell cycle generation time is taken as 24 hours.
These data were in agreement, whether generated by the simple
computer program in the Appendix or with a Texas Instruments T1 30×.
As mentioned in the text, reasons for p (proliferation rate) variation may
be related to a greater or lesser extent (or not at all) to r, or to a variety
of other factors; some suspected, most unknown. 

A: Days to generate 10 cells. 

r=(p–d) Days

1.0 29.9
0.50 59.8
0.20 149.5
0.10 299.0
0.01 2990.0 

(8.2 years)

B: Days to ‘refill’ to 109 cells from generation #3 (8 cells).

r=(p–d) Days

1.0 26.9
0.50 53.8 
0.20 134.5
0.10 269.0
0.01 2659.0 

(7.3 years)

C: Days to generate 0.5 × 109 cells. 

r Days

1.0 28.9
0.5 57.8
0.2 144.5
0.1 289.0
0.01 2890.0 

(7.6 years)

r=number of generations. p=proliferation rate. d=reduction of p due to
cell morbidity. Symmetric and asymmetric proliferation values are
considered identical, as we are unable to distinguish between them.

Table II. Nominal time to generate or to ‘refill’ N number of cells,
according to a representative logistic model. The maximum proliferation
rate is obtained from the equation or the graph. The maximum growth
rate and the time to 109 cells are obtained from the solved equation or
the cell print-out available in the online Appendix. 

A: Days to generate 109 cells. 

r=(p–d) Days

1.0 38
0.5 76
0 2 188
0.1 376
0.01 3736 (10.2 years)

B: Days to refill to 109 cells from 8 cells (generation #3). 

r=(p–d) Days 

1.0 36
0.5 72 
0 2 180
0.1 360
0.01 3600 

(9.7 years) 

C: Days to generate 0.5 × 109 cellsa.

r=(p–d) Max. prolif rate. Days to 0.5×109 cells

1.0 19 43.5
0.5 40 91.0
0.2 100 227.0
0.1 201 452.0
0.01 2004 4500.0 

(11.7 years)

r=number of generations. p=proliferation rate. d=reduction of p due to
cell morbidity. aNotice the difference in proliferation rate t due to a
greater r. 



values in Table IA or calculating the rate of proliferation
starting with 8 cells, the results are the same (Table IB).
Finally, noting that 0.5 × 109 cells, a quantity detectable by x-
rays, are only one day (r=1) away from generating 109 cells
(p=1, d=0), subtracting one day from the corresponding value
in Table IA generates the corresponding component of Table
IC. For other values of r, dividing ‘1 day’ by the factor
representing r and multiplying the number of days when r=1,
as with r=0.5, subtracting 2 days from the values in Table IA
generates that value, 53.8 days, for Table IC. Alternately, values
can be directly calculated from the basic formula, with 0.5 ×
109 cells as the end point. Once again, the two approaches give
corresponding values. As noted, changes in r, the ‘effective’
proliferation rate, profoundly extend the time before detectable
numbers of cancer cells develop. 

Time to Appearance and Time to Refill 
Estimated with a Logistic Equation

With the logistic equation, the situation is very different. The
maximum rate of proliferation and the time to appearance are
obtained either graphically or from the printed tables available
in the Appendix (the latter in an abbreviated version is
presented in Table II). Note again that once any single value is
available, the others can be approximated as described above.
Sections A and B of exponential Table I and logistic Table II
are both internally and mutually consistent. The exponential
equation generates more cells per unit of time than does the
logistic equation. However, both equations gave unanticipated
results in which the values in section C exceeded those of
section B (Table I) or both A and B (Table II). 

Reasons for these quantitative differences relate to the
steady exponential rise compared to the ‘interrupted’ logistic
growth rate with the gradual increase to a maximum that is
followed by a more rapid decline of the latter (see
Appendix). While it may not be intuitively apparent that
beginning with 8 cells, 109 cells are reached in a little less
time than an initial single cell reaches 0.5 × 109 cells, such is
the nature of exponential growth under these assumptions.
The more ‘mixed’ unfolding of a logistic equation, initially a
very delayed exponential growth, but which is subsequently
attenuated, yields an initially unanticipated result. 

Elements of a Logistic Model 
for a Stem Cell Application

Logistic equations are commonly used to model laboratory
or clinical cancer growth or their hypothetical simulations
(18-22). To provide a more realistic model of tumor growth,
logistic equations incorporating a reduction in proliferative
rate toward the end of cancer cell accumulation by including
a term representing feedback that dampens later growth rates
have been widely employed (5, 17). 

As before, stem cells can be considered in an exponential
model including two types of processes: the proliferation and
depletion rates for CSCs and daughter cells. This simplified
biological model can be further developed to approximate
the intrinsic behavior underlying the biological behavior. The
final equation is: 

N(t)=KxN(0)/{N(0) + (K–N(0)xexp(−rxt)} 

as discussed further in the online Appendix. (Note: K, the
carrying capacity, is denoted as N in the exponential model.) 
The results of duplicating the analyses using the R program
(The R 2.13.1 program for Windows (32/64-bit) is available at
htpp://cran.r-project.org/bin/windows/base/) with the results
generated from the simpler exponential equation starting
under the same initial conditions [one initial CSC, r=(p–d) of
1.0 and various cell depletions (or alternately holding d=0 and
varying p alone)] are presented in Table II. As anticipated, the
times to reach the notational cell numbers obtained from the
logistic equation, Sections A and B, were greater than those
of the exponential equation. This was true at all values of K
chosen for the ‘time to appearance,’ ‘time to refill’ and ‘time
to generate 0.5 × 109 cells.’ The accepted number of localized
cancer cells considered detectable by conventional x-rays can
be generated in a number of ways within the boundaries of
1>0. Values of r=0-1 can be considered to represent reduction
in cell numbers, while r>1 can be considered to reflect
enhanced proliferation of daughter cells due, for example, to
a reduced cell cycle time (a number that is unavailable). Since
logistic equations rise to a maximum rate and subsequently
essentially reverse themselves due to the feedback term, the
times to accumulate 109 or half that number of cells are
available in the numerical printout from the logistic program
available in the online Appendix [www.uic.edu/nursing/
publicationsupplements/tobillion_Anderson_Rubenstein_Guin
an_Patel1.pdf] where instructions regarding its use are also
provided. Graphical estimation of these numbers is more
problematic, due to the prolonged periods with little apparent
change present at the beginning and end of the accumulation
(see the Figure in the Appendix). 

With the logistic equation, the time (in days), when the
maximum growth rate and carrying capacity N is reached, is
obtained from the numerical and graphic output for each, as
generated in the SPSS or R statistical programs. 

Use of Programs in the Appendix to 
Duplicate and Extend these Determinations

The population growth of tumors exhibits a saturation limit.
This property is well reflected in the S–shaped sigmoid
curve. The controlling biological parameters are proliferation
rate, depletion rate, and saturation. In our case, 109 cells is
termed the carrying capacity. To portray a visual image and
a numerical solution for this biological process, commands
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are copied and pasted into R or SPSS. The program
TOBILLION.R has the necessary controls for interested
users to provide their own choice of values for the three
variables. 

There are two important considerations in running a
logistic model: (i) the size of the carrying capacity (K), as
large values can require experimentation before graphic and
numerical solutions are obtained, and (ii) how to know at
what point the system reaches maximum growth, before the
rate starts its decline. Selection of appropriate ‘beggen’ and
‘endgen’ values is required to allow correct visualization of
the graphical and enumeration of the numeric output. It is
also important to note that these equations work with natural
logarithms e or base 10, whichever the case may be. 

As a simple hypothetical example, say one is interested in
starting from a single cell No as 1 with a carrying capacity of
reaching 100 cells (i.e., K=100). With the proliferation rate
as 1 and depletion rate of zero, prolifer=1, deplet=0.
Furthermore, one can study the loop up to the 20th
Generation. With these changes in the program, one can copy
from ###BEGIN to ###END and paste into R, which gives
the digital and graphical output. The necessary programs are
included in the Appendix, and R can be downloaded from the
Internet. The graph or table indicates that maximum growth
is reached at the 5th Generation. 

The program was focused on the carrying capacity to
reach either 109 cells or half that number, which can be
detected respectively by physical or x-rays examination.
Altering the input parameters allows other combinations to
be generated. 

Discussion

We were interested in comparing a simple exponential
equation with a more complex logistic equation, to obtain
order-of-magnitude estimates of time required for the growth
from an initial CSC to quantities of tumor sufficient for
detection by physical or x-rays examination. These are
available in the online appendix [www.uic.edu/nursing/
publicationsupplements/tobillion_Anderson_Rubenstein_Gui
nan_Patel1.pdf]. Comparing different rates of cell
proliferation and loss might provide a useful sense of the
tempo of cancer cell accumulation. We expected that the
times calculated from the exponential equation would be
considerably shorter than those from the logistic equation
(with its initially slower and diminishing terminal rate of
growth), as proved to be the case. 

Despite the inability to include many of the components
required for a more complete simulation, these two simple
programs provide a sense of order-of-magnitude changes in
the tempo of cancer growth that can be exhibited by solid
tumors subjected to different assumptions of proliferation
and cell loss. Interestingly, delay between an ability to reach

0.5 × 109 cells (detectable by x-rays) and 109 cells (palpable
by physical examination) could be short, a property of
exponential growth. 

Estimates of the time to appearance with r=1, p=1 and
d=0 as the index example were considered to involve fully
developed malignant cancer cells in optimal niches. Since
many types of solid cancer develop over a number of years
(8-10), ‘premalignant’ precursors lacking the necessary
genetic or epigenetic changes could not be considered.
Cancer development is believed to occur from partially
transformed daughter cells sequentially acquiring additional
‘driver’ genetic or epigenetic events (11), necessary for the
further development of malignant properties. The relation
between proliferation rates and the probability of developing
the subsequent required oncogenetic changes, both probably
contribute to delay in the development of the next necessary
genetic driver event (3, 11, 23, 24). Whether CSCs originate
through a stochastic process or by a more linear development
from an initial stem cell was not part of the assumptions. 

For the very approximate estimates of these parameters and
under the conditions chosen, the simple exponential equation
with r equal to 1 initially would reflect the behavior of a very
rapidly growing malignancy; the more complicated logistic
equation characteristic would reflect a slower growing one
subject to limitations on its proliferation. Exponential equations
may more closely mimic some rapidly growing hematopoietic
malignancies, while logistic equations characterize non-
hematopoietic cancer. Differences between these malignancies
in their interaction with the vascular system may contribute to
their growth rates. A discrete role for CSCs as distinct from
their daughter cells could not be considered, as suppositions
about their behavior over time were not considered (25). 

With logistic equations, as the carrying capacity K (end
number of cells sought) becomes large and the growth rate r
diminishes to very low values, replication of the initial and final
cell(s) is represented as extending over many cell generations
before it is completed. This amounts to an extremely protracted
cell cycle over a number of generations (days) that delays
completion of the initial and final cell divisions. 

Logistic equations subject to certain constraints can be
reduced to exponential equations. This may occur if K
becomes very large and the N[t]/K term becomes sufficiently
reduced or if the population size N[t] were much smaller
than the carrying capacity K. Under these conditions, the
population can grow nearly exponentially until the
population size is no longer much smaller than K. 

The history of an evolving tumor resembles a variation of a
‘sum over time’ series, in which the developing population
includes daughter cells of differing diminishing replicative
ability and subsequent differentiation, cell death (programmed
or otherwise), necrosis or senescence. Proliferation of CSCs
depends in some way upon unidentified demand(s). The tempo
of cancer proliferation is thought in part to be driven by active
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proliferation of CSCs as they replenish or augment the transit-
amplifying cell population. Prostate PC3 cell holoclones,
characterized by morphology, epitope composition and
behavior, have been identified as including CSCs, while
meroclones and paraclones are included in their transit-
amplifying populations that gradually undergo the changes
previously described (26). Since, for some types of cancer,
estimates of CSC numbers have been only a few percent of
cells, it seems either that they need not replicate extensively
if (i) supported by active transit cell proliferation, (ii) the
number of CSC has been underestimated, or (iii) additional
unidentified CSCs might exist, possibly to be evoked under
specific niche conditions. If CSCs are not monolithic and a
tumor contains CSC subtypes, their variation should influence
response to therapy intentionally directed against one of them. 

The ability of pancreatic and possibly other types of cancer
to metastasize is apparently one of the last capacities to
develop (10). Metastases from some treated tumors exhibit a
long latency period, remaining indolent or even undetected for
prolonged periods. Malignant melanoma provides an example
in which metastases that are believed to have occurred before
excision of the primary melanoma remain quiescent before
actively proliferating years later (27). Additional genetic or
epigenetic events and/or changes in the properties of the niche
seem to be necessary for clinical recurrence. 

If a sequence of genetic or epigenetic changes denoted as
a series of related events A-> B-> C-> D-> E is required to
yield a fully malignant pancreatic or other CSC able to
metastasize, is it the case that interdiction of one of the
intermediate stages prevents subsequent events from
occurring and so precludes development of the terminal cell?
In some types of solid cancer, do precursor forms as A-> B
-> C represent ‘benign’ precursors of the evolving cancer? If
a precursor stage is blocked, do alternate pathways develop?
Genetic instability of malignantly transformed cells (28) and
the epithelial to mesenchymal transition (12) contribute to
the development of malignant properties. 

Identifying mutual signaling between the transit-amplifying
population and the CSC promoting their proliferation may
provide sites for interdiction. Uncomplicated asymmetric
proliferation (Appendix, Figure 1B) introduces a gradually
declining ratio of CSCs to daughter cells, a potential form of
feedback presumably also important in nonmalignant stem
cell to daughter cell interactions. Further genetic changes or
the rare reversion (de-differentiation) of a daughter cell to a
CSC could underlie replacement in treated tumors of CSCs
no longer susceptible to therapy, recreating in a different way
what was considered as the original reason for the lack of
therapeutic success, a potential form of an ‘infinite regress.’ 

The mode of CSC proliferation, the fraction of tumor cells
replicating and whether tumor size is reduced due to
differentiation or cell loss should largely define the pace of
cancer development over time, but their relative contributions

varying in time and location remain unknown. When genetic
or epigenetic changes with a low probability of occurrence
are combined with a robust loss of transforming cells and an
indolent proliferation rate, early detection by physical or x-
rays examination is not possible. Three potential approaches
for extending cancer latency periods, converting them to more
chronic forms of illness, are: (i) identifying the reasons for
long cancer latency periods, (ii) the mutual interactions
between CSCs, their daughter cells and the niche they occupy,
and (iii) whether intermediate but usually unidentified steps
in malignant transformation provide sites for interdiction (8).
Currently, surgical removal of suspect precursor or benign
lesions and lifestyle changes related to diet, exercise and
avoidance of known or suspected carcinogenic agents seem
to represent the only practical means of potentially modifying
the pace of pre-clinical development of most solid and
possibly other types of cancer. 
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