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Abstract. A non-invasive method to monitor the humoral
immune response in mice after immunization is described.
From fecal pellets of an individual mouse, a sufficient
amount of active immunoglobulins or their fragments can be
extracted to perform a regular examination of the status of
the immune response by immunoassay. Hapten-specific
antibodies from the feces of mice from three immunization
trials showed very similar characteristics to those obtained
from serum at a given date. Therefore, it can be suspected
that some serum IgG enters the intestinal lumen and ends up
in the feces, where they appear to be considerably stable.
Hapten-specific IgAs were not found in the feces. Being able
to analyze antibody titers in feces could be an interesting
animal welfare refinement to standard practice that does not
entail repeated blood sampling.

Monoclonal antibody production in routine use today still
has to rely on the immune response of immunized animals
(1, 2), although considerable efforts are being made to
improve animal protection in antibody production, such as
isolating antibodies from egg yolk (3, 4) or milk (5), or by
applying in vitro techniques putting forward recombinant
antibodies (6), antibody libraries (7) and single cell-based
techniques (8).

Monitoring of the immune response is not only mandatory
to determine the moment of a sufficiently high specific
antibody titer but also to observe potential increase of
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affinity during affinity maturation (9, 10) and to select the
‘best’ from several mice immunized in parallel as well as
identifying non-responders. In the production of antibodies
against small molecules (11), this monitoring is a critical
step because it is the first possibility to assess the success of
earlier process stages, i.e. (i) the selection of the hapten used
as mimetic of the small molecule; (ii) the modification of
such hapten to enable its coupling to a carrier protein; (iii)
the selection of the carrier protein as well as (iv) the
coupling method and hapten:protein ratio obtained (12, 13).
Far from being the Achilles’ heel of the process, the in vivo
monitoring of the immune response in animals has seen
modest improvements over the years. As a matter of fact, the
estimation of antibody titer and the tracking of affinity
maturation (14) between boosts is performed by probing the
animal’s blood (15). For mice, facial vein puncture,
retrobulbary (orbital sinus) venipuncture, tail incision or tail
vein venipuncture are practiced. These methods, particularly
when the multiple collection of serum samples from the
same mouse is needed, require considerable training and
experience of the experimenter. Nevertheless, they cause
significant stress to the animal and risk of impairment of the
mouse’s health. Compared to serum retrieval, collection of
mouse feces represents several advantages: it is non-invasive,
there is no need for needles and syringes, the animal remains
unhurt over the immun-ization period and samples can be
collected on a daily basis.

Immunoglobulin G (IgG) is the only antibody isotype with
an extended half-life (16) and most monoclonal antibodies
represent this isotype. It is produced at different anatomic
sites such as the spleen, lymph nodes, lymph tissues, efc. Its
presence in the feces, together with IgA (so-called
‘coproantibodies’), has been known for almost 90 years (17-
19), but the question concerning its origin(s) remains an
active research field (20-22). The local production of IgG by
the intestinal mucosa has been evidenced by both in vivo and
in vitro experiments (23, 24), while the shuttle mechanism
of circulating serum IgG into the intestine has received
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somewhat less attention (25-27) and just recently started to
be elucidated (28-31). The major histocompatibility complex
class I-like neonatal Fc receptor (FcRn) seems to play a role
in transporting circulating IgG throughout the intestine
endothelium (transcytosis) as well as in reverse, recycling
IgG and IgG—antigen complexes (22, 32). Indeed the FcRn
receptor is a key homeostatic regulator for IgG, controlling
its transport (bidirectional) across several epithelial barriers
in mammals to affect both systemic and mucosal immunity
(22, 23, 33, 34). The role of FcRn, which was discovered in
the late 1980s (35), in IgG homeostasis regulation was
comprehensibly reviewed recently (16, 34). The studies of
Besser et al. (25) demonstrated that around 68% of
circulating IgGl clearance occurrs by transfer to the
gastrointestinal tract in calves using radioactively labeled
(1) IgG administered intravenously. Externest et al. (36)
described a correlation of serum IgG concentrations with IgA
in mouse feces but not with fecal IgG. In humans, significant
quantities of IgG have been found to be secreted into the
intestinal lumen (21).

Here we describe observations during the monitoring of
three independent in vivo immunizations for three unrelated
haptens: isolithocholic acid (ILA), ochratoxin A (OTA) and
triacetone triperoxide (TATP). In the feces of intraperitoneally
immunized mice we found antigen-specific IgG was able to
bind the hapten with similar affinity as the IgG from serum
samples of these mice. ILA is a bile acid formed from 3-keto-
5B-cholanoic acid reduction (37); OTA is a mycotoxin
produced by some Aspergillus and Penicillium species (38)
and is known to be found in some commodities such as
cereals, red wine, coffee and dried fruits (39); TATP is an
improvised explosive which is highly attractive to terrorists
due to its easy and cost-efficient synthesis and lack of
detection by the conventional surveillance methods in use (40).

Materials and Methods

Antibodies. Polyclonal anti-IgG sera were obtained from Acris
Antibodies (Herford, Germany): anti-mouse IgG (H&L) whole
molecule, from sheep (R1256P, Lot 20243, 2.2 mg/ml); anti-mouse
IgG - F(c), from goat (R1612P, Lot 22712, 3.7 mg/ml). Polyclonal
anti-IgA mouse serum (from goat, NB 7501, Lot A23; 1 mg/ml) was
obtained from Novus Biologicals via Acris Antibodies.

Immunogens and tracer synthesis. Horseradish peroxidase (HRP),
EIA grade, was obtained from Roche (Mannheim, Germany).
Guardian™ (peroxidase conjugate stabilizer/diluent) was purchased
from Thermo Scientific (Perbio, Bonn, Germany). Bovine serum
albumin (BSA), fraction V, receptor grade, was from Serva
(Heidelberg, Germany). N,N-Dimethylformamide (puriss.), N,N’-
dicyclohexylcarbodiimide (puriss.), N-hydroxysuccinimide (purum)
and tetrahydrofuran were from Fluka (Neu-Ulm, Germany). ILA
(5pB-cholanic acid-33-ol), melting point 181-182.5°C, was from
Steraloids Inc. (London, UK). OTA was purchased from Alexis
Biochemicals (Enzo Life Sciences, Lorrach, Germany). TATP was
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synthesized according to Wolffenstein (41) and recrystallized three
times from hot methanol (42). Acetone (‘picograde’), was obtained
from LGC Promochem (Wesel, Germany). PD 10 columns
containing Sephadex G 25 were obtained from GE Healthcare
(Miinchen, Germany). Polypropylene tubes (1.5 ml) were purchased
from Eppendorf (Hamburg, Germany).

Protease inhibitors. Aprotinin from bovine lung and leupeptin
hydrochloride were purchased from Sigma-Aldrich (Miinchen,
Germany), Pefabloc® SC (4-2-aminoethyl)benzenesulfonylfluoride
hydrochloride) and Complete Protease Inhibitor Cocktail tablets
were from Roche (Mannheim, Germany); and Pepstatin A was from
Applichem (Darmstadt, Germany).

Enzyme-linked immunosorbent assay (ELISA) reagents. Sodium
phosphate dibasic dihydrate, sodium phosphate monobasic dihydrate,
potassium phosphate monobasic, potassium dihydrogen citrate,
sodium chloride, sodium carbonate and sodium bicarbonate were of
Fluka ‘ultra’ quality and obtained from Sigma-Aldrich (Miinchen,
Germany). Trifluoroacetic acid (for protein sequence analysis) and
calcium nitrate tetrahydrate (ACS) were purchased from Merck
(Darmstadt, Germany). Research grade 3,3”,5,5’-tetramethylbenzidine
(TMB) and pure Tween™ 20 were from Serva (Heidelberg,
Germany). Phosphoric acid (85%), N,N-dimethylacetamide (puriss.)
and sodium azide (>99%) were supplied by Sigma-Aldrich
(Miinchen, Germany). Hydrogen peroxide 30% Trace select® and
calcium sulfate dehydrate (puriss.) were from Fluka. Sulfuric acid
(95-97%) and hydrochloric acid (32%), were of Baker analyzed grade
(Mallinckrodt Baker, Griesheim); methanol, 2-propanol and
acetonitrile were HPLC grade (Mallinckrodt Baker, Griesheim).
Ultrapure reagent water (hereafter referred to as Milli-Q water) was
obtained by running demineralized water (by ion exchange) through
a Milli-Q® water purification system (Millipore Synthesis A 10;
Millipore, Schwalbach, Germany). Transparent microtiter plates with
96 flat-bottom wells possessing high protein-binding capacity
(MaxiSorp™ ) were purchased from Nunc (Thermo Scientific).

Animals. Female, three-month-old BALB/c mice were bred and
housed at the Biotechnology Department of Potsdam University,
Golm, Germany (for ILA and OTA immunizations) and at Charles
River Laboratories, Sulzfeld, Germany (for TATP immunization).
The studies had approval of the respective Animal Care and Use
Committees at the institutions.

Preparation of the immunogens and tracers. The haptens ILA, a spacer
derivative of TATP with a carboxy terminus described by Walter et al.
(42) and an OTA derivative carrying a triglycine spacer were coupled
to the carrier protein BSA via N-hydroxysuccinimide chemistry with
carbodiimide to produce the immunogens according to Tatake et al.
(43). The same method was used to synthesize the respective enzyme
tracers, using HRP (44). ILA and the TATP hapten were coupled
directly to the proteins, while for OTA, a triglycine spacer was used
to link it to the protein. The activated esters were obtained in
anhydrous N,N-dimethylformamide, except the TATP hapten, which
was produced in anhydrous tetrahydrofuran. Some fractions of the
immunogens were precipitated using acetonitrile.

Immunizations. For each hapten, three BALB/c mice were
immunized intraperitoneally using 20 or 50 pg of the insolubilized
immunogen in Freund’s complete adjuvant supplied by Difco
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(Lawrence, KS, USA). The animals were boosted regularly (at 4 to
6-week intervals) with the (soluble) immunogen (10-50 pg) in PBS
buffer. Serum samples (80-100 pl, retrobulbary puncture) were taken
five to seven days after each boost to evaluate the titer and affinity
maturation of the hapten-specific antibodies. After leaving the blood
sample for 1-2 hours at room temperature, the samples were
centrifuged (3,000 x g for 5 minutes) and the supernatant recovered,
to which ca. 10% (v/v) of a 0.1% (w/v) azide solution was added.
Serum samples were then stored at 4°C.

Feces were collected 30, 42 and 18 weeks after the first
immunization in the case of ILA, TATP and OTA, respectively,
together with serum samples of the same day. For TATP and OTA,
the mice were placed in separate cages for one day for fecal
sampling (up to 1 g per animal) and serum collection. For ILA, the
three immunized mice were sampled together for feces (mixed
sample). Husbandry and handling of animals, immunization and
blood sampling/feces collection were performed at the facilities of
Potsdam University at Golm, Germany, and at Charles River
Laboratories, Kiflegg, Germany.

Fecal extraction. A slightly different protocol is described for each
hapten because the three immunizations were performed
independently and at different times by different operators. The
protocols were based on previous extraction methods described by
Dion et al. (45). The final dilution factors given for serum samples
and fecal extracts result from serial dilution experiments in order to
obtain comparable optical densities in the ELISA measurements.

Feces from ILA-BSA-immunized mice were extracted using PBS
buffer (pH 7.6) containing 1% (w/v) sodium azide supplemented
with Complete Protease Inhibitor Cocktail tablets from Roche (1
mini-tablet, EDTA-free, per 10 ml buffer). One gram of air-dried
feces was shaken overnight (20 hours) with 10 ml of the
aforementioned buffer. The extract was aliquoted into 2 ml
Eppendorf tubes which were thereafter centrifuged at 15°C, 15,000
x g for 5 minutes. The supernatant was diluted 10-fold in PBS
buffer prior to performing the ELISA.

Feces from TATP-BSA-immunized mice were extracted using PBS
buffer (pH 7.6) containing 1% (w/v) sodium azide, 1% (w/v) BSA (or
0.1% (v/v) Tween 20) and protease inhibitor mix (0.3 uM aprotinin
from bovine lung, 4.3 uM leupeptin hydrochloride, 8.4 uM Pefabloc®
SC and 365 uM Pepstatin A). Air-dried feces (500 mg) were shaken
overnight (23 hours) with 7.5 ml of the described buffer. The extract
was aliquoted into 2 ml Eppendorf tubes which were thereafter
centrifuged twice at room temperature, 14,000 x g for 10 minutes. The
supernatant was not diluted prior to performing the ELISA.

Feces from OTA-BSA-immunized mice were extracted using
PBS buffer (pH 7.6) containing 1% (w/v) sodium azide, 3.5% (w/v)
BSA and a protease inhibitor mix (0.3 pM aprotinin from bovine
lung, 4.3 uM leupeptin hydrochloride, 1 uM Pefabloc® SC and 3
uM Pepstatin A). Air-dried feces (500 mg) were shaken overnight
(20 hours) with 10 ml of the described buffer. The extract was
centrifuged twice at 4°C, 14,000 x g for 15 min. The supernatant
was diluted 10-fold in PBS buffer prior to performing the ELISA.

ELISA. All the assays were performed in MaxiSorp plates using
PBS buffer (pH 7.6). The respective capture antibody (anti-IgG
whole molecule; anti-IgG Fc or anti-IgA) was diluted to 1 ug/ml for
all the assays. The serum samples were diluted in PBS containing
1% (w/v) BSA at 1:100,000 anti-ILA; 1:10,000 anti-TATP; and
1:80,000 anti-OTA .The standard solutions were prepared in Milli-

Q water, with the exception of the stock solutions which were
prepared in an appropriate organic solvent (2-propanol for ILA,
methanol for TATP and OTA). The enzyme tracers were diluted in
PBS containing 1% (w/v) BSA (1:100,000 for ILA, 1:10,000 for
TATP) or PBS containing 0.1% casein (1:10,000 for OTA).
Calibration was performed using serial dilutions of stock solutions
of the target analytes in Milli-Q water. Optical density readouts
were interpolated by a logistic 4-parameter function (44) the ‘C-
value’ representing the inflection point of the sigmoidal curve which
is similar to 50% inhibitory concentration (ICs).

Results and Discussion

Hapten inhibition: feces vs serum. The fecal extracts provide
similar inhibition curves (i.e. comparable shape and C-
values) to those obtained with the sera of immunized mice
sera for all three immunizations, as shown in Figure 1A-C.
Dilutions of sera and fecal extracts had to be individually
adapted to provide a comparable maximum OD (A-value,
‘blank’ OD). The fecal curve of the ILA-BSA immunized
animals (Figure 1A) depicts results from a mixed fecal
sample of the three animals; the displayed serum curves for
the other immunizations originate from one single mouse
since no significant differences in their C-values were found
between the animals besides antibody titer.

Capture antibody specificity: whole molecule (WM) vs Fc.
Capture antibodies of different specificity have been used for
the ELISA, one of them from an immunization with an
‘WM’ mouse IgG, the other from immunization with the Fc
(crystallizable fragment) of mouse IgG.

Binding to the anti-WM- and the anti-Fc-specific capture
antibodies seems to be dissimilar for feces and sera,
respectively. As Figure 2A shows, for fecal extracts, higher
signals were obtained when anti-WM was used, while for the
sera, the higher signal was obtained with the anti-Fc
antibody (Figure 2B). The experiment was repeated three
times with different mouse sera and mouse fecal extracts and
the same outcome was observed. The coating/capture
antibodies were always applied at the same concentration
and the assays performed within the same microtiter plate.
In the examination of the three mice immunized with the
TATP-BSA conjugate, in the indirect ELISA all three mice
showed specific antibody titers but in the direct ELISA
format, just one mouse showed a specific titer. Exactly the
same pattern was obtained from the fecal samples.

We were not able to prove unambiguously if the binding
observed might not also be due to antibody fragments and/or
degradation products. In future trials, this could be elucidated
by gel electrophoresis and Western blot if sufficient amounts
of protein are isolated.

Hapten-specific fecal IgA vs fecal IgG. Hapten-specific IgA was
not found in any of the immunized mice. The results are
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Figure 1. Calibration curves obtained from mouse sera and feces. Sera and feces were taken from immunized (open symbols) and non-immunized mice
(closed symbols) the same period after immunization, which was 30 weeks for isolithocholic acid (ILA), 42 weeks for triacetone triperoxide (TATP)
and 18 weeks for ochratoxin A (OTA), respectively. The solid lines represent the calibration curves for the different haptens: A: ILA with C-value of
0.17 ugll (feces) and 0.12 ug/l (serum); B: TATP with C-value of 2.1 mg/l (feces) and 2.0 mg/l (serum); C: OTA with C-value of 0.25 ug/l (feces)
and 0.17 ug/l (serum). Error bars: standard deviation of triplicate determinations.

illustrated exemplarily with the ILA immunization shown in
Figure 3. The microtiter plate was coated partly with anti-mouse
IgA and partly with anti-mouse IgG (WM). Only hapten-specific
IgG was detected in the feces. Moreover, non-specific IgA was
present in high concentration in the feces as illustrated by the
high background in Figure 3. The same test was performed for
the sera and the same outcome was observed except for a
marked difference in the IgA background: the OD values from
sera were much lower and constant at 0.012 (x0.002).

Considerations regarding the fecal extraction buffer. Feces

from ILA-immunized mice were extracted with the described
buffers (see Materials and Methods section) as well as with

66

PBS buffer (without protease inhibitors) and even Milli-Q
water. Although we could not compare the IgG titers because
the feces were collected at different times, the curve shapes
and the C-values were highly comparable regardless of the
extraction solution used. Furthermore, a Milli-Q water
extract stored at 4°C was reanalyzed 6 months later and gave
the same results (data not shown).

Feces from TATP-immunized mice were extracted with
the described buffer containing either BSA or Tween 20 and
no differences were found between the calibration curves.
Furthermore, the use of protease inhibitor mix as proposed
in literature (46) is not necessary to protect IgG from
degradation. Antibodies appeared to be quite stable in air-
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Figure 2. Isolithocholic acid (ILA) calibration curves using different
anti-1gG coating. The comparison between two coating antibodies is
shown: anti-mouse IgG ‘whole molecule’ (WM) and anti-mouse 1gG Fc.
The open symbols represent immunized animals and the closed symbols
non-immunized ones. A: Fecal extracts; B: serum. Means and standard
deviations (error bars) of results from 3 different sera and 3 different
fecal extracts are shown. Serum and fecal samples were collected 30
weeks after the initial immunization.

dried samples of feces, a finding reported before for IgA
(47). This facilitates transport and storage of samples.

Application of the method for Mab production. We found that
the immune response in an individual mouse can be monitored
non-invasively on the basis of sampling and extraction of the
animal’s feces. Aqueous extracts of mouse feces provided
stable and equivalent results to those obtained from serum
samples, except for the absolute IgG titer, which was
considerably lower in the fecal extracts, requiring smaller
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Figure 3. Isolithocholic acid (ILA) calibration curves using anti-1gG
and anti-IgA coating, respectively. Calibration curves obtained using
fecal extracts and two different coating antibodies: anti-mouse 1gG Fc
and anti-mouse IgA. The open symbols represent feces from immunized
mice, while the closed symbols are from non-immunized ones. Error
bars: standard deviation of triplicate results. Serum and fecal samples
were collected 30 weeks after the initial immunization.

dilution factors. As a cause, it can be suspected that some
serum IgG enters the intestinal lumen and ends up in the feces.

No selective IgA was found in the feces. Yet the final
proof that coproantibodies are reliable indicators of splenic
B-cell antibodies (which will be used for the fusion) still has
to be provided. Assaying salivary antibodies that are also
proposed for this purpose (48) involves much more difficult
procedures in sampling.

For future studies several improvements should be pursued,
an adopted housing system for individual mouse probing and
optimized storage and extraction protocols for the feces to
increase the sensitivity of the analysis. Moreover, a method of
standardizing samples using total antibody concentration or
protein content could be helpful to reduce potential variations
between animals and samplings. Tracing the immune response
of mice which are immunized in order to produce monoclonal
antibodies is a very frequent task in immunochemical
laboratories. Monitoring is necessary to select the most
reactive mouse (or rank different mice) and to determine when
peak titers have been reached. This level of comparison, e.g.
wether the titers from feces also rise and plateau over time,
was not possible in our trials. Adopting the novel approach
would represent considerable progress as it permits early and
frequent testing for the development of specific antibody titer
in the several animals usually immunized in parallel, thus
saving time. Moreover, the technique would allow those less
experienced in animal handling to perform the studies.
Collecting feces instead of sampling blood allows for a daily
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monitoring of the immunization progress in mice without
hurting or even touching the animals, so that in contrast to
serum sampling, mice experience much less distress. In the 3R
concept (replacement, reduction, refinement) of animal
protection (49, 50), this represents a welfare ‘refinement’ to
standard practice, with the potential of improving laboratory
animal welfare considerably.
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