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Abstract. Phenothiazines have their primary effects on the
plasma membrane of prokaryotes and eukaryotes. Among the
components of the prokaryotic plasma membrane affected
are efflux pumps, their energy sources, energy providing
enzymes such as ATPases, and genes that regulate and code
for permeability aspects of the bacterium. The responses of
multi-drug (MDR) and extensively drug resistant (XDR)
Mycobacterium tuberculosis to the neuroleptic phenothiazine
thioridazine are reviewed. The information collated suggests
that this phenothiazine has the potential to cure XDR and
MDR tuberculosis infections, a potential that has been
recently demonstrated by its ability to cure 10 patients who
presented with XDR TB infections. The mechanism by which
this phenothiazine produces the desired effects within the
infected macrophage is also discussed.
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The development of antimicrobial agents for the therapy of
infection began in the late 19th century with the pioneering
work of the German scientist Paul Erhlich. The studies
conducted by Erhlich demonstrated that the newly created
dye the phenothiazine methylene blue had activity against
infectious bacteria and parasites (1). Previously, Bodoni had
shown that the dye when administered to humans caused
them to become lethargic (2) and although this study was
not noticed for over 40 years, a similar conclusion was
reached by others with the use of a phenothiazine
antihistamine (3). However, the neuroleptic properties of the
antihistamine were weak and attention was now focused on
the methylene blue itself. Interest in this dye continued
primarily as a result of the work by Perkin who had created
the first chemically synthesized dye mauve some 50 years
earlier and because of its commercial value, caused many to
focus on the creation of additional dyes (4). Among the
many discoveries obtained with the study of methylene blue
was the development of dyes that could stain living tissue-
vital stains. Because these dyes were derived from the
phenothiazine methylene blue and they also inhibited
motility of parasites, Roehl, a student of Erhlich, developed
a canary model for malarial infection with Plasmodium
yoelii and successfully treated the infected canary with a
phenothiazinium salt created by Schulemann in 1932 by a
chemical process that altered the side chain of methylene
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blue (5). However, the phenothiazinium salt was still blue
and its use for human malaria infections would turn the
patient an undesirable blue.

It remained for Charpentier in 1957 to develop a method by
which the colour of methylene blue derivatives could be
eliminated, and among these derivatives, was chlorpromazine
which retained the neuroleptic properties of the original dye
and which, for the next two decades was the primary
chemotherapeutic agent for the control of psychosis (6). As a
consequence of the wide use of chlorpromazine (CPZ) it was
noted that the frequency of infections within psychiatric wards,
oftentimes kept under improper hygienic conditions, were far
fewer than that observed for other more sanitized areas of the
hospital (7).

These observations prompted studies for the next 30 years
after the introduction of CPZ that investigated the in vitro
activities of CPZ against bacteria (8-27) and in vivo activities of
CPZ (11, 12, 15-17, 28-37). CPZ was shown to inhibit the in
vitro growth of a wide gamut of bacteria (9, 13, 15, 18-21, 23-
25,27, 38, 39), inhibit the growth of mycobacteria (9), inhibit
the secretion of toxins (14-17, 21), cause the elimination of
plasmids from infected Gram-negative bacteria (8), cause the
lysis of bacteria (22), increase the permeability of bacteria to
agents (25), reverse resistance to antibiotics (26) and inhibit
bacterial enzymes (8, 23). Although all in vivo activities were
produced by concentrations that were well beyond those that
can be achieved clinically (40), and these high concentrations
inhibited immune functions (13, 28, 30), the activities produced
in vitro could be reproduced in vivo. Consequently,
administration of CPZ to mice reduced production and effects
of endotoxins by bacteria (11, 12, 15-17), cured the mouse of
experimental infections (12, 29, 30-36). Although CPZ was
undoubtedly shown to have potential for the therapy of
bacterial infections, there was little interest during these 30
years post-introduction of CPZ due to the fact that this was the
Golden Period of Antibiotics and there was no need for the use
of an agent that was developed and extensively used for the
therapy of psychosis. Moreover, because the FDA has a policy
of ‘one drug for one disease’ the use of a neuroleptic as an
antimicrobial agent was in effect a ‘no-no’.

The Threat of Multidrug-resistant Infections and
the Chemotherapeutic Potential of Phenothiazines

Resistance to penicillin antibiotics was seen soon after the use
of penicillin (40) and with the introduction of new antibiotics
and antimicrobial agents and their extensive use and misuse,
mono-resistance to these antibiotics rapidly followed (40-44).
Resistance of a bacterium to two or more antibiotics (multi-
drug resistance) was a rare event until the early 1980s (45, 46),
frequent during the late 1980s (47-50) and common place
during the 1990’s (51, 52). With the piling up of evidence that
the frequency of multidrug-resistance (MDR) would continue
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to increase (52), particularly in strains of Mycobacterium
tuberculosis (Mtb) resistant to as many as 4 to 5 first-line of
defence drugs (53) some focus on the wide gamut of the in
vitro activities of phenothiazines against antibiotic susceptible
(53-58) and resistant (9, 53, 59, 60) strains of Mtb were
demonstrated. However, because these activities took place at
concentrations that were clinically irrelevant (37, 61) interest
in the antitubercular properties of phenothiazines remained
mild. The demonstration by Crowle’s (61) group that the
phenothiazine CPZ enhanced the killing of intracellular Mtb
increased interest in phenothiazine. However, because the side-
effects of this phenothiazine are serious and frequent (62), no
attempt to use this compound for the therapy of pulmonary
tuberculosis ensued. Nevertheless, interest was renewed with
the demonstration that the milder and phenothiazine
thioridazine (TZ) was equally effective against mono-resistant
Mtb, MDR and extensively drug-resistant (XDR) (resistant to 5
primary defence drugs) strains as was CPZ (59, 60). Moreover,
other milder phenothiazines such as antihistamines were almost
as effective as TZ (60). Following the macrophage protocol of
Crowle, exposure of macrophages containing phagocytosed
MDR Mitb resulted in the enhanced killing of the bacterium at
concentrations in the medium that were below those used for
the chronic therapy of psychosis (63). These studies were soon
followed by demonstrations that mice infected with antibiotic-
susceptible (64) and antibiotic-resistant Mtb could be readily
cured with TZ (65). The curative ability of TZ and its much
milder side effects coupled with over 40 years of safe usage,
propose that at the very least, XDR TB patients whose
prognosis of mortality was certain may be considered for
therapy with TZ under ‘a compassionate rationale’ (66, 67).

Before discussion of the mechanism by which phenothiazines
enhance the killing of intracellular bacteria, the targets of
phenothiazines will be discussed.

Targets of Phenothiazines

1. CPZ inhibition of energy-dependent membrane functions of
eukaryotes and prokaryotes. Most of the studies on the
antimicrobial activity of phenothiazines have been conducted
with CPZ. Nevertheless, the mechanisms defined for CPZ have
been essentially demonstrated for other phenothiazines when
studied. Therefore, for practical purposes we will at this time
confine ourselves to the mechanisms by which CPZ affects
bacteria in vitro, ex vivo (intracellular) and in vivo.

CPZ inhibits the binding of calcium to calcium-binding
proteins of eukaryotes (60, 68, 69) and prokaryotes (58, 70-
76). As a consequence of its calcium-binding properties,
calcium-dependent enzymes of eukaryotes are inhibited.
Among these are enzymes that provide energy (77-79) such as
kinases (80-83) and phosphatases (84-87). The inhibition of
energy-producing enzymes, most of which are on or close to
the plasma membrane of eukaryotes, reduces or obviates
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Figure 1. A) The effect of increasing concentrations of CPZ on
ultrastructure of Salmonella typhimurium (x10000). a: Control with
homogenous cytoplasm; b: with chlorpromazine at 75 mg/l; c: with
chlorpromazine at 100 mg/l. (121). B) The effect of chlorpromazine on
the ultrastructure of S. aureus exposed to 30 mg/l for 6 h. Note
thickened cell wall (1 and 3), thickened cross wall (4), and lamellae (2)
(pointers inside cell) (x82,000) (ref. 6).

numerous plasma membrane functions. Among the plasma
membrane functions inhibited are phagocytosis of bacteria (88,
89), ABC transporters of MDR normal and cancer cells (90-
97), and transporters of calcium (80, 98-100) and potassium
ions (101-105). With respect to prokaryotes, CPZ inhibits the
binding of calcium to calcium-binding proteins (106, 107) and
mycobacteria (108-111), inhibits bacterial kinases (87, 107,
112-114) and phosphatases (115), calcium (8) and potassium
transport (116, 117). In other words, the activity of the
phenothiazine on energy-dependent membrane functions of
eukaryotes and prokaryotes is very similar.

2. CPZ and the bacterial cell envelope. The earliest activity of
a phenothiazine such as CPZ on bacteria takes place at the level
of the cell envelop inasmuch as this structure is first
encountered by the agent. The activities affected are primarily
those that are involved in energy dependent transport processes
as shown in the previous section. In vitro exposure of bacteria
to CPZ increases the permeability of the organism to antibiotics
(118-121) and as a consequence, reduces antibiotic resistance
(118-121). An example of the effect of CPZ on the cell
envelope of Gram-negative and Gram-positive bacteria is
provided in Figure 1. Briefly, the cell envelope which is

crenated in the control Salmonella becomes smooth after a 16
hour exposure to a sub-inhibitory concentration of CPZ; in
vitro exposure of Staphylococcus aureus to the same
phenothiazine causes deterioration of the cell envelope and
subsequent lysis of the organism. The effects on the cell
envelop are preceded by elongation and filamentation of the
Gram-negative bacterium as shown in Figure 2. The
phenothiazine also has other cell envelope effects that include
an ability of the phenothiazine to reduce antibiotic resistance
or to reverse resistance to two or more antibiotics (122-124).
Resistance is achieved through the inhibition of a multi-drug
efflux pump system of the organism which insures that
antibiotics and other noxious agents are extruded prior to their
reaching their intended targets. This subject is discussed in the
following section.

3. Bacterial efflux pumps and their inhibition by phenothiazines
3a. Bacterial efflux pumps involved in multi-drug resistance.
The efflux pump systems of bacteria are genetically classified
into five groups and sub-classified as to the immediate source
of the protons that energize the pump (122). Efflux pumps that
utilize a proton from the hydrolysis of ATP directly are
members of the ABC transporter super family (125). These
transporters consist of 6 or 10-12 domains that span the plasma
membrane; one domain recognizes the agent to be extruded
and another has a binding site for ATP and its subsequent
hydrolysis that results in two protons (126, 127). The protons
generated energize the pump and the substrate is exported to
the outside of the cell. Bacterial ABC efflux pumps that
transport potassium and calcium are readily inhibited by
phenothiazines (128-130). The substrates extruded by ABC
efflux pumps are presented in Table I.

Efflux pumps that are energized by protons under the
control of the proton motive force (PMF) are genetically
classified into four families: the major facilitator superfamily
(MFS) which contains over 1000 transporters and therefore is
the largest of the families; the multi-antibiotic toxin extrusion
family (MATE); the small multi-drug resistance family
(SMR); and the resistance nodulation division family (RND).
The PMF results from metabolic activity of the bacterium that
generates protons which are transported to and distributed to
the surface of the cell (131). With respect to Gram-positive
bacteria, the concentration of surface bound protons is greater
than that at the medial side of the plasma membrane due to
their binding to proton loving lipids of the lipopolysaccharide
of the cell envelope thereby resulting in a proton gradient
(132, 133). The protons on the surface are made available to
the MFS, MATE and SMR efflux pumps all of which can
extrude antibiotics and other noxious agents (134-136). With
respect to Gram-negative bacteria, which have a more complex
cell envelope consisting of an outer membrane and an inner
membrane (plasma membrane) separated by the periplasmic
space, the protons on the surface of the cell envelop are also
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Table 1. Relationship of transporters of bacterial efflux pumps to antibiotics extruded. Adapted from VanBambeke et al. (223).

SMR RND MEFS ABC
Antibiotics Tetracyclines Tetracyclines Tetracyclines Tetracyclines
Erythromycin Fluoroquinolones Fluoroquinolones Fluoroquinolones
Sulfadiazine Erythromycin Erythromycin Macrolides
Rifampicin Lincosamides Lincosamides
-Lactams Rifampicin Rifampicin
Fusidic acid Pristinamycin Chloramphenicol
Chloramphenicol Chloramphenicol Aminoglycosides

Aminoglycosides

Aminoglycosides

attracted to the lipopolysaccharide components that love
protons and these are translocated to the periplasmic space and
used for the energizing of the RND efflux pump. The
concentration of surface bound protons is much greater than
that in the periplasm and therefore an electrochemical gradient
is maintained that is defined as the PMF. The electrical
potential of the PMF can be maintained at extreme pH and
temperature (137-140).

3b. Structure of an RND mdr efflux pump. The structure of
RND efflux pumps of Gram-negative bacteria are similar and
consist of three protein units: a TolC protein that provides a
conduit from the transporter to the surface of the cell; a
transporter protein that is attached to the plasma membrane and
exports substrates from the outer leaflet of the plasma
membrane directly to the attached TolC unit (141, 142); and,
two fusion proteins that flank the transporter unit and assist the
transport of the substrate through the TolC channel by
peristaltic action (141, 142). Figure 3 depict the structural
relationship of the units of the AcrAB-TolC efflux pump and
the peristaltic mechanism behind the extrusion of the substrate.
Because the most studied RND efflux pump of Gram-negative
bacteria is the AcrAB pump present as the main efflux pump of
E. coli (142) and Salmonella (143, 144) we will focus our
discussion on the AcrAB system.

3c. Genetic regulation of RND efflux pumps. Permeability of
Gram-negative bacteria to antibiotics is controlled by the
combined roles of porins and efflux pumps (145-150) and the
lipopolysaccharide layer of the outer membrane (151-155).
Porins are tribarrel structures that provide a conduit through
the outer membrane to the periplasm of the cell. Lipophobic
antibiotics use these channels for penetrating and eventually
reaching their intended targets. The number of porins used by
lipophobic antibiotics of some clinical MDR Gram-negative
isolates are reduced (148, 150) suggesting that the MDR nature
of these bacteria is due to down-regulation of porins, primarily
of the outer membrane protein F (ompF).

The MDR phenotype of an increasing number of Gram-
negative clinical isolates is due to the over-expression of the
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Figure 2. Elongation of E. coli exposed to 100 mg/l of chlorpromazine
for 24 h. The example shown in this figure is indistinguishable from the
response of E. coli to -lactams to which it is sensitive (6).

Figure 3. Schematic of structure of AcrAB-TolC efflux pump and the
relationship of its components to the cell envelope. Proton of periplasm
activates transporter and is subsequently translocated to the cytoplasm.

main efflux pump of the organism (156, 157). The efflux
mediated Gram-negative MDR phenotype is believed to be the
result of mis-use or over-use of antibiotics (158-162).
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Figure 4. Accumulation of different concentrations of EB by S. enteritidis 5408 strain (A) and its progeny adapted to ciprofloxacin - S. enteritidis
5408¢p (B). The data are presented the difference between the accumulation data of the strain more EB and the EB alone, which has a background

especially at higher concentrations.

Experimentally, exposure of E. coli to increasing concentrations
of tetracycline results in increasing resistance to tetracycline and
other unrelated antibiotics, accompanied by an increased activity
of the acrB transporter gene (163). Induced resistance can be
reversed with a phenothiazine and by transfer to drug-free
medium (163, 164). Evaluation, by real-time RT-PCR, of stress,
local regulators and transporter coding genes indicates a cascade
of genes that are increased in activity at each level of induced
resistance to the antibiotic (164). Similar results have been
obtained by others who employed the same approach for
ciprofloxacin-induced resistance of Salmonella (165).

Interestingly, inducing MDR in E. coli with increasing
concentrations of a given antibiotic, results in the over-
expression of the ompF gene that is accompanied with a
reduction of ompF units (164). Because of an increased activity
of genes that code for the main proteases of E. coli, the
reduction of porin F units is not the result of a down-regulation
of ompF, but of the degradation of ompF prior to it being
inserted into the porin unit (164). The regulation of genes that
affect the permeability (porin and efflux pumps) of bacteria to
antibiotics will be further discussed in section 3d.

3d. Physiology of the AcrAB efflux pump. The demonstration
of an efflux pump system of individual bacterial species and
strains has been routinely conducted with the use of the
fluorochrome ethidium bromide (EB) (166-172), a universal
efflux pump substrate. A new automated system that employs
EB for the study of a given efflux pump system has been
developed and provides a real-time assessment of accumulation
and efflux of EB under physiological conditions (125, 173,
174). Consequently, one may program for the desired
temperature for conducting the assay (isolates obtained from
poultry may have temperature optima that differ from bacterial
isolates from the human host); and employ medium whose
condition may have an effect on accumulation/efflux (ionic
strength, pH, inhibitors, efc.). This assay has previously been
described in detail (125, 173, 174).

The first consideration that may be explored via the
automated EB system is the different abilities of individual
strains of a given species to extrude EB. As shown in Figure
4, glucose-containing saline of pH 7, the maximum
concentration of EB that the S. enteritidis 5408 can barely
handle (extrude) is 1 mg/l of EB (Figure 4A), whereas the S.
enteritidis 5408 p strain that has been induced to high level
resistance to tetracycline can handle up to 5 mg/l of EB after
which EB begins to accumulate (Figure 4B). The effect of
pH is to modulate the accumulation of EB as shown in
Figure 5. In this case, the example given is for E. coli K-12
AG100 in glucose-containing medium of pH 5, 7 and 8 and
1.0 mg/1 of EB. As evident in Figure 5, at pH 8 accumulation
of EB is greatest, however, at pH 5, accumulation of EB is
absent (flat). The absence of accumulation at pH 5 is due to
an active intrinsic efflux pump system. The following
experiment was conducted: after 15 minutes of incubation of
E. coli K-12 AG100 in glucose-free medium of pH 5 and 1
mg/1 of EB, the instrument was paused, the proton ionophore
carbonyl cyanide m-chlorophenylhydrazone (CCCP) was
added, and the instrument restarted. As evident in Figure 6,
the addition of CCCP immediately increases sharply the
amount of fluorescence-thereby demonstrating the presence
of an efflux pump system that is fully operational at pH 5.
Similar results have been obtained with Salmonella,
Enterococcus faecalis and Enterobacter aerogenes (125).

An EB microplate assay has been developed that utilizes
the same concept behind the EB agar method (175, 176) but
rather than agar, an equivalent broth medium is used in
conjunction with a 96 microwell plate (177). Figure 7 provides
evidence that the accumulation of EB by E. coli strains that
differ by the degree of AcrAB efflux pump expression is
modulated by pH (178).

Other methods have been developed for the study of efflux
of EB. As an example, the EB agar method (177) has been
modified to accommodate as many as 12 strains for purposes of
distinguishing differences in their efflux capacities at differing
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Figure 5. pH modualtion of accumulated EB by AG100 and the effect
of glucose.

pH. As evident in Figure 8, pH modulates accumulation of EB
by salmonella strains that differ in the expression of their efflux
pump AcrAB.

3e. Effect of the phenothiazine TZ on genes that control the
permeability of Salmonella. In vitro exposure of Salmonella
to CPZ inhibits growth for the first 8 hours after which the
organism becomes increasingly resistant (121). As evident in
Figure 9, TZ also produces the same effect. Further studies
to investigate the growth inhibition and resistance of the
organism to the agent at the gene level, were carried out using
real-time RT-PCR. The effect of TZ on the stress genes soxS
and rob, the global regulator of permeability ramA, the local
regulator of efflux pumps marA, the transporter gene acrB,
the two-step regulon pmrA and pmrB, and the two step
regulon phoQ and phoP of Salmonella after zero time, 0.5;
1.0; 4.0, 8.0 and 16 hours was determined. As evident in
Figure 10, the first gene that is significantly activated within
an hour relative to that of the control (not exposed to TZ) is
the stress gene soxS, after which time it is relatively inactive
for the duration of the culture. The activity of the global
regulator gene ramA is increased within an hour and
continues to increase for the next 7 and a half hours. By the
end of the culture period, ramA activity is equal to that of the
control. The local regulator marA is highly active but only for
a brief period (after 4 hours). The transporter gene acrB
achieves a very high level of activity by the end of 8 hours
and although its activity decreases by the end of the culture
period, it remains the most active gene. After 8 hours of
exposure to TZ the strain begins to grow. The activities of the
pmrA and pmrB commensurate with the sensor role known
for pmrB which precedes the increased activity of pmrA
(179). Clearly, the sequential and coordinated activities of
soxS, ramA, marA and acrB are responsible for the ensued
resistance of Salmonella to phenothiazine.
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in the expression of their AcrAB efflux pump.

The application of the automated EB method for the
assessment of the TZ effects on the accumulation of EB by
salmonella was conducted in glucose free saline pH 8 (179).
As shown in Figure 11 exposure of Salmonella 104 to 50 mg/l
of TZ immediately promotes accumulation of EB.
Surprisingly, approximately after 20 minutes a peak of
accumulation is reached, followed by a decrease in
fluorescence-indicating efflux. Because no metabolic energy
was present in the glucose-free saline, the efflux response
noted could not be readily related to any significant change in
gene expression. Consequently, the question was asked as to
the source of energy that afforded efflux. Salmonella, when
grown in the absence of glucose, will switch its source of
energy to fatty acids. Therefore, the assay that demonstrated
TZ promoted accumulation followed by efflux was repeated
with additions of increasing concentrations of palmitic acid.
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Figure 8. Effect of pH on the minimum concentration of EB that
produces fluorescence of Salmonella strains. Note that sal 5408 does
not fluoresce with concentrations of EB as high as 3 mg/l.

Figure 11 serves to illustrate that the accumulation of EB
could be significantly reduced and hence, the process of efflux
was not needed. Because increasing concentrations of EB do
significantly increase accumulation at pH 8 which is not
followed by efflux, we can conclude that the efflux noted after
TZ promoted accumulation is not the result of the activation of
the efflux pump as a consequence of accumulated EB.
Interestingly, if at the peak of TZ accumulation CCCP or the
common inhibitor of an RND efflux pump PABN (phe-arg-
napthylamide) is added, TZ promoted efflux is not affected
(Figure 12).

ta

Optical density at 600nm

o 2 4 6 3 ] 12
Time (h)
TZ concentrations (mg/L)

-0 —= 50 =6 100

Figure 9. Effect of concentrations of thioridazine on the growth of
Salmonella. Growth curve of Salmonella enteritidis 104 in the presence
of TZ 100 mg/L (Mueller-Hinton) at pH 7 4.

3f. Antimicrobial activities of phenothiazines. The activity of
TZ against Salmonella discussed in the previous section takes
place at sub-inhibitory concentrations. At much higher
concentrations, the growth of the organism is inhibited after a
16 to 24 hour period. Comparison of the minimum inhibitory
concentration (MIC) of CPZ, the phenothiazine most studied
with respect to its antimicrobial properties against bacteria, is
summarized by Table II. Among the most resistant species to
CPZ are the Gram-negative bacteria, with Salmonella strains
being the most resistant followed by Enterobacter, E. coli,
Shigella and Klebsiella. Among the less resistant bacterial
species are Gram-positive ones such as Mycobacteria,
Staphylococci, Enterococci and Vibrio. Regardless of the
degree of sensitivity to the phenothiazines, the MICs are well
beyond the level that can be achieved in the patient, namely,
0.5 mg/L of plasma (181-183).

The earliest morphological response of Gram-negative
bacteria to CPZ is the development of filamentation (184) as
illustrated in Figure 2. Filamentation that is caused by
exposure to sub-inhibitory concentrations of a beta-lactam has
been shown to be the result of the antibiotic binding to
penicillin binding protein 3 (185). However, filamentation can
be promoted by exposure to non-beta lactam antibiotics such
as nalidixic acid, novobiocin, oxolinic acid and nitrofurantoin
(184, 186) by cyclic AMP (187-189), by heat (190), and by
many other environmental conditions which threaten the
organism. This suggests that the reponse of filamentation is
one of adaptation that affords survival (191). The response of
Gram-positive bacteria to CPZ is similar to the response to
beta-lactams as illustrated in Figure 13. Beta-lactams at sub-
inhibitory concentrations inhibit the hydrolytic enzymes that
would normally cause the separation of the replicated cells
from each other (192, 193). For filamentation, the end product
is the containment of as many as 64 genomes within a
common cytoplasm; for the cluster, as many as 64 cells have
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Figure 10. Assessment of stress, global and local regulators of efflux pumps, acrB transporter and two-step PmrA/B genes of Salmonella cultured
in medium containing 100 mg/L of thioridazine by real-time RT-PCR. Quantification of relative expression of regulator genes, stress genes, acrB,
pmrA and pmrB genes of S. enteritidis 104 after 0, 0.5, 1, 4, 8, 16 h of exposure to TZ 100 mg/L. Changes in gene expression are relative to the

untreated cells, and normalized against the house-keeping gene 16S rRNA.

been shown to make up the cluster. The mechanism by which
a phenothiazine induces filamentation and cluster formation
of Gram-negative and Gram-positive bacteria are not known.
However, at considerably higher concentrations of the
phenothiazines, the agent readily intercalates between nucleic
bases, primarily between areas of the DNA rich in guanosine
and cytosine bases (194, 195). Moreover, similar
concentrations of the phenothiazine inhibit gyrase (196) and
promote direct relaxation of supercoiled DNA (196). At first it
is difficult to reconcile the effects on gyrase with that on
supercoiling. Quinolones that target gyrase and affect
supercoiling of DNA also promote filamentation, therefore it
may be assumed that filamentation promoted by CPZ involves
gyrase and relaxation of supercoiled DNA. Because relaxation
of supercoiled DNA affords transcription (197) and a number
of genes are involved in induced filamentation of E. coli (188)
it is reasonable to expect that at least the nucleotide sequence
of fic and ficl genes are targets of the phenothiazine. Recently
published studies have shown that TZ reduces the transcription
of the MecA element of MRSA and its coded product PBP2a
(198) and that CPZ reduces the activity of the global regulator
ramA (97). These findings and the fact that TZ, as discussed in
section 3d, has effects on the activity of a collection of genes
involved in the regulation of permeability of a Gram-negative
bacterium indicate that the relationship of specific genes to the
induced phenothiazine morphological responses of bacteria
will be a subject of intense study.

4. The mechanism by which TZ enhances the killing of
intracellular Mtb, MDRMtb and XDRMtb. The TZ-enhanced
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Table II. MIC of CPZ against pathogenic bacteria.

Bacteria MIC CPZ
(mg/L)
Gram-negative  Salmonella enteritidis NCTC 13349 >100
Salmonella enteritidis 104 250
Salmonella enteritidis 104¢p >800
Salmonella enteritidis 5408 200
Salmonella enteritidis 5408¢p 500
E. coli AG100 60
E. coli AGIOOTETS 140
Shigella 80
Pseudomonas aeruginosa >256
Klebsiella pneumoniae >256
Gram-positive  Staphylococcus aureus ATCC 25923 50
MRSA COL 125
MRSA HPV107 62.5
Enterococcus faecalis ATCC 29212 64

Mpycobacterium tuberculosis H37Rv

(ATCC 27294) 10
Mycobacterium smegmatis mc2155 25
Mycobacterium avium ATCC 25291 25

killing of intracellular antibiotic susceptible M. tuberculosis,
MDR Mtb and extensively drug resistant XDR Mtb non-
killing human macrophages takes place at concentrations of
TZ in the medium that are similar to those used for the
therapy of psychosis (65). At first, because CPZ is
concentrated by lysosomes of the macrophage (199), killing
was attributed by our group (65), as Crowle’s group (63), to
be the result of the phenothaizine being concentrated to a
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Figure 11. The effect of TZ on the accumulation of EB by Salmonella in
glucose-free saline pH 8. Note: In the presence of increasing
concentrations of palmitic acid (PA) the effects of TZ on accumulation
are significantly reduced.
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Figure 12. The effect of CCCP and PAPBN on the TZ (50 mg/L) promoted
efflux of EB by S. enteritidis 104 at pHS. Addition of CCCP and PAJN,
at the peak of TZ induced accumulation, does not affect efflux.

level compatible with that bactericidal concentration
demonstrated in vitro (65). TZ inhibits efflux pumps of both
prokaryotes and eukaryotes (200), and among the pumps
affected are those responsible for the transport of K* and
Ca™ jons that are essential for the acidification of the
phagolysosome that results in the activation of lysosome
hydrolases (201, 202). The effect of other inhibitors of K*
and Ca** transport on the Kkilling of intracellular
mycobacteria was also examined (203). As shown in Figure
14, these common inhibitors of K* and Ca** transport
enhanced the killing of intracellular mycobacteria. The
mechanism by which TZ enhances intracellular killing was

]
'& :
(a) ~

Figure 13. S. aureus and 30 mg/L CPZ. Incubation 6 hours (x50 200).
Arrows indicate five distinct types of abnormalities (221).
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Figure 14. Effect of TZ and its derivatives in the killing activity of
macrophages infected with M. tuberculosis H37Rv ATCC27294. Human
macrophages (1x10° cells/mL) were infected with M. tuberculosis at a
ratio of 1:10 (1 macrophage:10 bacteria). After 1 hour of phagocytosis,
cells were washed to remove non-phagocytosed bacteria. Aliquots of the
test compounds were added to the corresponding wells and cells
incubated for 0, 1, 2 and 3 days. After incubation, supernatants of the
cells were removed and plated in order to determine whether the addition
of the agents cause the lysis of the macrophage and subsequent release
of the bacterium. Adhered cells were lysed with SDS 0.01% in order to
release all the intracellular bacteria and aliquots of the lysed cells were
plated in 7H11 plates and incubated at 37°C. After 3 to 4 weeks, CFU
were counted and bacterial concentrations calculated. The data presented
are averages from three independent experiments each of which was
conducted in triplicate. First published by Martins M et al. (203).

previously proposed (131). Briefly, the binding of the
mycobacterium to the plasma membrane of the macrophage
results in the invagination of that part of the plasma
membrane ultimately resulting in the phagosome. The efflux
pumps that transport K* and Ca** into the cell are present in
the plasma membrane in large numbers (204) and, after the
formation of the phagosome, these transporters are now
transporting these ions from the phagosome to the cytoplasm
of the cell. Exposure of the macrophage that contains the
phagocytosed bacterium to TZ, results in the uptake of the
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phenothiazine via the process of pinocytosis (205). The
vacuole that contains TZ and the lysosome fuse with the
phagososome. TZ, mnow diffused throughout the
phagolysosome, inhibits the transport of K* and Ca**
thereby building up the concentration of these ions within
the phagosome, and subsequent activation of V-ATPases
(206). The activation of the V-ATPases generates H* protons
which decrease the pH of the phagolysosome and the latent
hydrolases are now activated (207) and promote the
degradation of the bacterium (207-209).

5. New concept for the therapy of MDR and XDR TB. Due to
the fact that therapy of a tuberculosis infection takes place over
many months, it often leads to the selection of antibiotic
resistant mutants (210). Ineffective management by
inexperienced physicians and patient non-compliance (211) are
the primary reasons for the selection of MDR Mtb mutants. As
a consequence of these factors over a prolonged period of time,
the accumulation of mutations result in the development of
XDR TB, an infection that is for all purpose, a lethal one, and
even under the best conditions of case management (Super
DOTS and same-day laboratory analyses) mortality is high
(212, 213). Assuming that new drugs are created and are
effective against all strains of Mtb, it will be a matter of time
before resistance to the agent takes place (210).

The finding that TZ enhances the killing of intracellular Mtb
strains by activating the killing machinery of the non-killing
macrophage gives rise to a totally new concept of anti-TB
therapy (214). Rather than target the bacterium, the targeting
of the macrophage that contains the intracellular
mycobacterium by-passes the mutational response expected
with the targeting of the bacterium itself. The advantage of
having a form of therapy that is immune to a mutational
response by the bacterium, is self evident.

6. Will TZ be used for the therapy of multi-drug and extensively
drug resistant infections by Mtb? The administration of 50 mg
TZ in one day to a healthy human demonstrated that the QT
interval was prolonged (215). This is a large initial dose and
its effect on the QT interval is not surprising. However, initial
therapy with TZ begun at 25 mg/day and increased slowly over
time. Under these conditions, the patient soon acclimates to the
drug and with a few exceptions, does not develop any notable
changes in cardiac functions. TZ can be used safely and its use
does not produce any side effects that differ from those
produced by other non-phenothiazine neuroleptics (215).
However, because approximately 6% of Eastern Europeans
have a mutation in their p450 cytochrome (216), the
metabolism of TZ will be slower, and with the build-up of TZ
concentration, and the possibility of the heart slowing down to
a level that cannot sustain life has some unknown probability
(217-220). Although precautions involving cardiac monitoring
prior to and during initial therapy with TZ have not been
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routinely taken in the past, it is reasonable that they be
instituted if TZ is to be used, just to be on the safe side.

The above statements raise a question that each and every
physician must pose when they have used all that is available
and the XDR TB patient’s prognosis of imminent mortality is
certain. If precautions are taken and therapy will not harm the
patient, will the use of TZ, an agent that is now proven to cure
MDR TB infection in mice help the patient survive for longer,
improve the quality of life, and provide a cure? Given the fact
that TZ has been safely used for over 40 years and is still used
in the USA and other parts of the world, what would the
patient say given the choice: eventual mortality with high
degree of suffering, or, try what may be the only option if
quality of life is to be improved and a possible cure is
achieved? This question has been recently answered by a
group that demonstrated that administration of thioridazine to
12 XDR TB patients who complied with the therapy proved
to be a successful treatment in 10 of the patients (224).
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